26 Disk Space Management

26.1 INTRODUCTION

It has been said that the only thing all UNIX systems have in common is
the login message asking users to clean up their files and use less disk
space. No matter how much space you have, it isn’t enough; as soon as a
disk is added, files magically appear to fill it up.

Both users and the system itself are potential sources of disk bloat.
Chapter 12, Syslog and Log Files, discusses various sources of logging
information and the techniques used to manage them. This chapter
focuses on space problems caused by users and the technical and psy-
chological weapons you can deploy against them.

Ifyou do decide to Even if you have the option of adding more disk storage to your system,

add a disk, refer to s g good idea to follow this chapter’s suggestions. Disks are cheap, but

Chapter 9 for help- yministrative effort is not. Disks have to be dumped, maintained,
cross-mounted, and monitored; the fewer you need, the better.

26.2 DEALING WITH Disk HOGS

In the absence of external pressure, there is essentially no reason for a
user to ever delete anything. It takes time and effort to clean up
unwanted files, and there’s always the risk that something thrown
away might be wanted again in the future. Even when users have good
intentions, it often takes a nudge from the system administrator to
goad them into action.

618

spacegripe is
included on the
CD-ROM.

Chapter 26 Disk Space Management 619

On a PC, disk space eventually runs out and the machine’s primary user
must clean up to get the system working again. But on a UNIX machine,
many users can share a disk. When space gets low, users sometimes try
to ignore the problem as long as they can in the hope that someone else
will “break” first. It’s often hard to convince users that they should
remove any of their precious files until the disk is actually full or over-
flowing. Some users keep large junk files around just so that they’ll
have something to delete when the disk fills up and they can no longer
get any work done.

It does not work to send mail to all users asking them to clean up their
files or to post a message about the problem in /etc/motd . These
methods don’t assign responsibility to specific people. To get action, you
have to find out who the disk hogs are and let them know that you know
they are the source of the problem.

You can do this automatically with a script that calculates disk usage
for each user, identifies those whose consumption is above a certain
threshold, and sends polite mail requesting that they clean up their
files. We call our version of this script spacegripe . Since spacegripe
needs to forage in users’ home directories, it must be run as root. You
can set the threshold at which mail is sent by replacing the number
10,000 with the maximum number of disk blocks someone can have
without being pestered.

spacegripe is quite polite and precise, but alas, it is generally ignored
by our user community. It’s most effective the first time a user receives
a message; after that, the novelty wears off and subsequent messages
are often deleted without being read. Since the mail does not come from
a real person, it’s perceived as being only slightly more personal than a
broadcast message.

No one likes to be labeled as one of the top ten disk hogs, especially if
disk space is tight enough that other users are having trouble getting
their work done. We have found that publishing such a list is by far the
most effective way of “persuading” users to clean up. Whenever a list of
disk hogs is posted in /etc/motd , the disk space situation miracu-
lously improves.!

If some users do not reduce their disk usage even after being publicly
denounced, you will have to deal with them on a person-by-person
basis. Be gentle; a friendly message from an administrator has ten
times the impact of an automated reminder.

Another option for automation is to compress files that are larger than
a certain threshold and that have not been accessed recently, say in

. At sites where every user has a workstation, people tend to stay logged in all the time

and therefore never see the contents of /etc/motd . Public email is a good substitute.

620

See page 621 for
more information
about compression.

26.3

UNIX System Administration Handbook

thirty days. This is an invasive tactic and it is not 100% safe, since users’
files must be modified. However, it does free up a lot of disk space and is
worth considering in extreme cases.

A perl script called compressfs is included on the CD-ROM; it performs
the compression chores and then sends email to each user whose files
were compressed to explain what has happened.

When you ask users to clean up, you will get better results if you pro-
vide an easy way for them to store files off-line. A tape drive in a public
area allows users to archive infrequently-used files with minimal help
from you. In a semi-public setting such as a university, you might want
to consider selling tapes. DAT and QIC tapes can be hard to find, and it
takes some familiarity with the media to know what to buy. At mini-
mum, attach information to the tape drive that describes what kind of
media to buy, where to find it, and how much it costs.

HOG DETECTION

Information about disk usage can be obtained with the quot command,
which shows each user’s total number of files and disk blocks on each
filesystem. For example, quot -f /dev/sd4c produces

blocks files user

/dev/sd4c (/home/anchor):
112180 2501 markey
66340 3254 drew
63258 1267 weinberj
53874 5918 christos
45192 9761 jules

The quot command is not related to the quota system discussed later in
this chapter. du summarizes the disk usage within a directory hierar-
chy. For example, du -s /home/anchor/* yields

blocks user

112325 markey
66332 drew
63258 weinber]
53874 christos
47311 jules

The numbers reported by these commands are in “disk blocks.” Unfortu-
nately, folks and filesystems can’t seem to agree on how big a block is.
Table 26.1 shows the block sizes for various operating systems, in bytes.
Block size is actually a parameter of each filesystem, but many com-

Table 26.1

D

26.4

gzip is a GNU
thing. It’s included
on the CD-ROM.

Chapter 26 Disk Space Management 621

mands don’t take this fact into consideration. Files with holes® should
not be expanded when measuring file sizes, but on some systems, with
some commands, they are. Database files created by dbm always con-
tain holes and are usually only 25% of their apparent size.

Block sizes used by various commands

System du df quot
Solaris 512° 512° 1024
HP-UX 512 512 1024
IRIX 5122 5122 1024
SunOS 1024 1024 1024
OSF/1 5122 5122 1024
BSDI 512° 1024 -

a. You can get 1K blocks with the -k option.
b. Uses environment variable BLOCKSIZE, if defined.

The HP-UX manual page claims that quot uses 2,048-byte blocks, which
is true for quot -h, but not true for the -f , -c , and -v options. HP-UX
provides the Berkeley version of df under the name bdf .

quot counts all files belonging to a user; du counts all files in a particu-
lar directory. Users can own files outside their home directories, and
there can be files in users’ home directories that don’t belong to them.
Thus, there may be a discrepancy between the numbers reported by du
and quot . Holes in files and the counting algorithm for symbolic links
also influence the reported sizes.

DATA COMPRESSION

Most UNIX systems provide at least one set of utilities for data compres-
sion and expansion. These utilities usually include a compression pro-
gram, an expansion program, and a program that dynamically expands
for viewing. Some common program sets are the compress family, the
gzip family, and the pack family.

The best compression ratios are achieved with gzip , but it is fairly slow
and not all systems provide it. There are some compatibility problems
with early versions of the command, so if you use gzip it is wise to
standardize on the most recent version.

2. A file that is created by a program that writes a byte, seeks out a megabyte, and then

writes another byte is called a file with a hole in it. Should it occupy two bytes on the
disk or a million and two? Files with holes are usually stored with the holes compacted;
they are sometimes expanded by programs that either measure their size (du under ATT)
or archive them (tar or cpio).

622

Table 26.2

26.5

UNIX System Administration Handbook

compress is peppier than gzip and is universally available; its com-
pression is pretty good, too. pack is obsolete and should not be used if
you have a choice. It is even faster than compress , but it provides rela-
tively poor compression. Table 26.2 compares the performance of the
compress , gzip , and pack commands.

Comparison of compress, gzip, and pack

compress gzip pack
Input Saved® Time | Saved® Time | Saved® Time
2.1MB English text | 57.8% 16.3s | 61.4% 50.0s | 38.9% 8.8s
1.8MB Binary file 50.0% 14.2s | 61.9% 43.2s | 25.1% 8.1s
3.3MB C code 60.4% 24.1s | 74.0% 51.4s | 355% 14.3s
2.6MB Encrypted none none none

a. Percentage of original size removed. Bigger numbers indicate better compression.

Encrypted data does not compress.? Superficially, it appears to be ran-
dom data and thus fools the compression algorithms, which look for pat-
terns. There are other kinds of data that do not compress or that
compress poorly; for example, DNA sequencing information. Compressed
files generally cannot be compressed again.

Large files that are only accessed occasionally are good targets for com-
pression. When deciding whether to compress a file, you must decide
whether the savings in disk space warrant the CPU time and the hassle
that it takes to compress and expand the file.

SKULKER SCRIPTS

skulker is the name usually given to a script that goes around the
disk, controlling the size of system logs, removing abandoned junk files,
and checking for security breaches. skulker scripts are usually run by
cron either daily or weekly.

The junk files that skulker should remove vary from system to sys-
tem. Editor checkpoint and backup files, core files, and certain by-prod-
ucts of compilation are generally safe to remove, but there is always a
chance that someone will unknowingly name an important file to match
one of skulker ’s specifications and have it deleted. Your site’s deletion
policies should be documented in a public place so that users will not be
surprised when their files disappear.

Cleaning the Filesystem on page 176 gives examples of commands that
might be used in a skulker script. Many of the security-related com-

3. Actually, it gets bigger when you try to compress it.

26.6

Chapter 26 Disk Space Management 623

mands described starting on page 549 are also good candidates for
inclusion in a skulker

TUNEFS: SET FILESYSTEM PARAMETERS

The tunefs command is used to alter the layout policies on a particu-
lar filesystem. tunefs doesn’t change the filesystem’s contents; it sim-
ply modifies the way in which future write operations will be handled.

The following filesystem parameters can be adjusted with tunefs

¢ The rotational delay between groups of blocks in a file

* The maximum number of blocks in a single transfer

¢ The number of blocks a file may claim from a cylinder group
¢ The amount of disk space to reserve as overhead

Theoretically, you can manipulate these parameters (and others speci-
fied when the filesystem is constructed) to achieve better filesystem per-
formance. Unfortunately, most modern hard drives are geometrically
more complex than UNIX expects, and the kernel’s optimizations are
often less than perfectly effective. Some settings make a difference and
some don’t; most sites don’t bother to fiddle with the defaults.

The overhead or “reserve” setting is still a useful tool, however. If this
parameter is set to a value other than zero, the filesystem conceals a
percentage of the available disk space. The default reserve is 10%, caus-
ing writes to fail when the filesystem becomes 90% full. The remaining
10% of space can only be used by root.*

This accounting trick allows the filesystem to keep pockets of free space
together so that new files can be written out in large chunks, boosting
performance. On a full disk with no reserve, throughput can be three
times slower than on a disk that’s 90% full.

If you're completely out of disk space, can’t delete anything, and can’t
add more storage to the system, you might consider shrinking the file-
system reserve to free up more space. The command

tunefs -m pctfree device

sets the reserve percentage for the filesystem located on device to
pctfree . Some systems also support an -0 option to instruct the file-
system to optimize for fastest readback (tunefs -0 t device) or least
fragmentation (tunefs -0 s device). When the reserve is pared to
under 10%, fragmentation is usually more important.

tunefs alters information stored in a filesystem’s superblock. Since the
superblock is cached in memory while the filesystem is in use, tunefs

4. If root does use some extra space, df will report the disk as being more than 100% full.

624

26.7

UNIX System Administration Handbook

should only be used on an unmounted filesystem. Otherwise, your
changes will be clobbered the next time the cached superblock is writ-
ten out. If you want to change the parameters of the root filesystem, run
the sync command a couple of times, use tunefs to edit the super-
block, and then do a reboot -n to reboot without any more sync s. This
is best done from single-user mode.

HP-UX provides a nifty -v option to view a filesystem’s current parame-
ters. It also provides a -A option, which forces backup copies of the
superblock to be edited as well as the master.

Most versions of the tunefs manual page mention that you can tune a
filesystem, but you can’t tune a fish. However, under OSF/1 you can
apparently tune a fish.

BSDI's dumpfs command prints out the superblock of an existing filesys-
tem. It can be used to examine the filesystem’s state before you start
making changes.

DisKk QUOTAS

If you can keep your disk space under control using informal methods
such as peer pressure and periodic audits, that is usually the best way
to run the system. But if these techniques fail, you may need to install
disk quotas to force your users to comply with “reasonable” limitations
on their use of disk space.

Quotas allow you to limit the number of inodes and disk blocks that can
be allocated to each user. The number of inodes roughly determines how
many files a user can own. The disk block limitation controls the total
amount of filesystem space a user can allocate.

Each limit is specified as two numbers: a soft limit after which the user
is warned about the impending quota violation, and a hard limit that
determines the absolute limit on the resource. Users are supposed to
stay under their soft limits when not logged in.

To keep users from simply ignoring the soft limits, the quota system
keeps track of how long someone has exceeded them. After a certain
amount of time (often three days by default), the soft limit is enforced as
rigidly as the hard limit, and nothing useful can be done until the user
cleans up. At this point, the time limit is reset and the user can exceed
the soft limits with impunity once again.

BSDI and OSF/1 support group quotas as well as user quotas, allowing
you to limit the disk space consumed by a particular project or class of
people. This is a nice feature because it gives you a way to protect differ-
ent groups from each other’s abuse while still leaving the space man-
agement within each group up to peer pressure and negotiation.

A

See Chapter 4, The
Filesystem, for
more information
about chown.

D

See Chapter 29
for more informa-
tion about disk
performance.

Chapter 26 Disk Space Management 625

On systems without group quotas, disk partitioning can be used to
achieve a similar effect. For example, separate partitions for students
and faculty will stop faculty from taking so much space that students
have none left. This provides rather gross control, since partitions are
often a few hundred megabytes and house many individual users.

HP-UX provides only halfhearted support for disk partitioning, and does
not support group quotas.

Group quotas don’t work well when users are in multiple groups; they
can simply rotate among groups to evade the quotas. Another sneaky
way for users to avoid quotas is to use the chown command to give away
their files to other users. Quotas originated in BSD, which doesn’t allow
chown to be used by anyone but root. The ATT version of chown is a
little different and does allow the owner of a file to give it away. In these
days of Chinese-menu operating systems, it is not unheard of to see
BSD’s quotas and ATT’s chown on the same system. There is usually a
flag that can be set at kernel configuration time to disallow the use of
chown by generic users.

HP-UX addresses the “chown vs. quotas” problem as part of a more gen-
eral facility for controlling access to quasi-root-like privileges. Read the
man page for setprivgrp for more details.

Quotas are useful not only to control true disk hogs, but also to stop
runaway user programs that might otherwise fill the disk by mistake.
Quotas provide a fine level of control, but require more maintenance
than other means of controlling disk usage. Frantic users who cannot
save their edit sessions become a constant administrative chore when
disk space is tight.

Quotas can also reduce filesystem throughput by up to 30%. Since disk
bandwidth has a dramatic effect on overall system performance, quotas
can sometimes make a machine act sluggish. To minimize the perfor-
mance cost of quotas, don’t install them on the root partition, where
most system-related disk activity occurs.

Quotas are handled on a per-user per-filesystem basis. If there is more
than one filesystem on which a user is able to create files, quotas must
be set for each one separately. If no quotas have been set for a particular
user on a given filesystem, no default limit is applied. By convention, a
limit of zero is also interpreted to mean “unlimited.”

How Quotas Work

Quota information for a filesystem is kept in a file called quotas in the
filesystem’s root directory. The quotas file contains the limits placed on
each user and also a summary of the amount of space consumed by each
of the system’s users.

626

A

UNIX System Administration Handbook

On systems that support group quotas, there are two summary files:
guota.user and quota.group . For brevity, we speak in this chapter
as if there were only one file; you may have to repeat instructions that
apply to the quota files if your system has group quotas.

The edquota command edits the per-user or per-group limits defined in
the quota file or files. quota and repquota print out information about
users’ quotas and their current use of disk space.

The kernel normally updates the quotas file whenever filesystem oper-
ations change the number of disk blocks that a user is consuming. How-
ever, system crashes and other irregularities can introduce small errors
into the summary file.

The quotacheck command examines a filesystem block by block to cal-
culate the current disk usage, then updates the quotas file with an
accurate summary. It is normally run with the -a flag at boot time,

causing it to check every mounted filesystem declared to have quotas in
the system’s filesystem table (usually /etc/fstab). quotacheck -v

prints a list of all users and their disk usages (a la quot). Most systems
also understand quotacheck -p, which makes quotacheck examine
filesystems in parallel in the manner of fsck .

HP-UX provides an even fancier -P option, which checks filesystems only
when they appear to need it. This can save a lot of time.

The kernel doesn’t automatically enforce quotas just because a filesys-
tem contains a file called quotas ; quotas have to be explicitly turned on
after a filesystem is mounted using the quotaon command.

Enabling Quotas

Since quotas are a feature of the filesystem, they must be implemented
in the kernel. Most systems today are shipped with quotas already
enabled. Unfortunately, some are not—on these systems, you must
build a new kernel that includes the quota code.

Chapter 13, Configuring the Kernel, describes the process of building a
new kernel. To enable quotas, you usually add a line like

options QUOTA

to the new kernel’s configuration file. After editing the config file,
rebuild the kernel as described in Chapter 13 and reboot.

In addition to having quotas defined in the kernel, your system must
explicitly start up quotas when the system boots. This involves running
the quotacheck -a-pand quotaon -a commands ° after local filesys-
tems have been mounted (these commands do not work on unmounted

5. The -a flags apply the commands to all filesystems for which they are appropriate.

(D]

Chapter 26 Disk Space Management 627

filesystems). This can be done from an rc startup script or from
/etcl/inittab , depending on how your system’s startup routine
works. Refer to Chapter 2, Booting and Shutting Down, for specifics.

A typical sequence of commands to mount, validate, and enable quotas
on all filesystems is

/usr/etc/mount -a > /dev/console 2>&1

echo -n 'checking quotas:' >/dev/console
lusr/etc/quotacheck -a -p >/dev/console 2>&1
echo ' done.' >/dev/console

lusr/etc/quotaon -a

HP’s version of mount understands quotas and turns them on automati-
cally when a filesystem that supports them is mounted. HP-UX still pro-
vides the quotaon command, but it needn’t be used at boot time.

Setting Up Quotas on a Particular Filesystem

Two steps must be taken to enable quotas on a filesystem. First, the
quotas file must be created and configured, and second, the filesystem
must be declared as using quotas in the filesystem table.

The quotas file should be owned by root. It should have read and write
permissions for root and read permission for everyone else. For exam-
ple, for a filesystem mounted as /users , you could create the quotas
file with the following commands:

touch /users/quotas
chown root /users/quotas
chmod 644 /users/quotas

These commands create an empty quotas file that you can populate
with summary information by running quotacheck devfile , where
devfile is the block device file (in /dev) on which the filesystem lives.

The filesystem table (usually /etc/fstab , sometimes /etc/vfstab

or /etc/checklist) contains information about how disk partitions
are set up and the uses to which they are to be put. Just as mount reads
the table to find information about which filesystems should be
mounted at startup time, quotaon and quotacheck read the table to
find out which filesystems have quotas enabled.

Partitions on which you have not yet instituted quotas will normally
have a line in the filesystem table that looks something like

/dev/raOg /users rw 1 2

The third field contains the code rw, meaning that the partition is to be
mounted for both reading and writing (on your system, this field may
contain additional options). To configure the filesystem for quotas, you

628

UNIX System Administration Handbook

either replace rw with rq (read /write with quotas), or you add the addi-
tional option quota , depending on the system. See page 630 for plat-
form-specific information.

Systems that provide both user and group quotas may use the rq con-
vention; however, they also use options userquota and groupquota
to explicitly enable each flavor of quota. Both of these options can take
an argument indicating the pathname to the appropriate quota control
file. The default names are quota.user and quota.group; there’s
usually no reason to change them.

Once you have set up a filesystem for quotas, you can reboot the system
to make quotas take effect, or you can run quotaon filesystem to
turn them on by hand. Since the format of the fstab file is rather picky,
we recommend rebooting. A syntax error you introduce when enabling
quotas may go undetected until a power failure months later.

edquota: Set Quotas

Once your filesystems are set up to support quotas, you can assign lim-
its to specific users and groups with the edquota command.

edquota user will put you into vi (or whatever editor is specified in
the EDITOR environment variable) to edit the quotas for that user on
each mounted filesystem that is currently configured for quotas. You
can specify multiple users, but since you will not be given any indica-
tion of which user’s quotas you are editing at any given time, this is not
very useful. The command

edquota-p proto-user user ..

sets user ’s quotas to be the same as those of proto-user . Multiple
users may be specified, but only one prototype user.

We maintain logins for a number of pseudo-users that are used only as
disk quota prototypes. We used to have pseudo-users with several dif-
ferent quota allocations for each of about four different categories of
account. This soon became too complex, so we simplified it to a three-
level system: small, medium, and huge.

If your system supports group quotas, the command
edquota -g group

or the command
edquota-p proto-group -g group

will set the quotas for group . edquota -t is sets the amount of time
that a user can stay over the soft quota limit before the system cracks
down and enforces it. A variety of different time units are supported.

See Chapter 17 for
more information
about the Network

File System.

26.8

Chapter 26 Disk Space Management 629

quota and repquota: View Quotas
To see the quotas set for a particular user, use the command

quota user

This command gives quota status information for filesystems on which
user is over quota; complete information about quotas on all filesys-
tems can be obtained by adding the -v flag. Individual users can find
out their own quota information using the quota command, but only
the superuser can see the quotas of other people.

login executes the quota command whenever a user logs in, thus
warning the user about any quota problems that exist. This can cause
annoying delays, especially with remote filesystems.

The repquota command produces a disk usage report similar to that of
quot and quotacheck -v,but it also reports each user’s quotas.

Quotas and NFS

When filesystems are cross-mounted on a network, the implementation
of quotas remains local to the machine that serves each filesystem. A
client machine isn’t responsible for doing any quota-related processing.
But since quotas are checked on the server before each operation, quota
limits are still enforced.

Most systems provide a simple daemon called rquotad which allows
quota information to be queried over the network. It’s used mostly to
make the quota command work correctly for remote filesystems, so
that users can be warned when they are over quota.

DisK OVERFLOWS

A filesystem that is completely full should be attended to as soon as
possible. An overflow on a root, /usr , or /var partition is more impor-
tant than one on a non-system partition, but no disk should be allowed
to fester in an unusable state.

First, find out what caused the filesystem to overflow. If you have been
keeping an eye on the filesystems and keeping them under 90% full, it is
most likely some sort of runaway program that is filling the disk. Do a
ps and look for suspicious processes. If you find the culprit, suspend it,
inspect and possibly remove the files it was making, and apprise the
process’s owner of the situation.

If the overflow was not caused by a runaway program, you will need to
remove some files to give breathing room for the filesystem until you
can get people to clean up. If the overflowing filesystem is /var , remove
whatever looks like junk in /var/tmp and truncate log files if you don’t
need to keep them for accounting. Check for kernel core dumps in the

630

26.9

A

UNIX System Administration Handbook

lusr/crash or /var/crash directory if your system supports them;
these can often be huge. If the problem is on a user filesystem, it may be
harder to find things to delete, but core files are a good place to start.

You can use the find command to identify large files that have been
recently created or modified. Here’s a typical example:

find / -xdev -mtime -7 -size +200 -print

The exact syntax of the find command varies from system to system.
This example is from SunOS; it lists files in the root partition that are
larger than 100K and that have been modified in the last week. If you
often have problems with overflowing disks, you might try running this
command from cron every night and mailing yourself the results (per-
haps with a higher size threshold).

SPECIFICS FOR VARIOUS OPERATING SYSTEMS

Quota-related commands are in /usr/sbin . Solaris does not support
group quotas; quota information is kept in a single quotas file. The
filesystem table is in /etc/vfstab . Use the rq option to request quo-
tas on a particular filesystem.

Commands are in /etc . The mount table is /etc/checklist . Filesys-
tems with quotas are marked with the option quota ; noquota is also
defined but is optional. HP-UX keeps track of the times when filesystems
are gracefully unmounted, or when commands are used that might
invalidate the quota summary information. This information is used to
implement quotacheck -P, which acts like quotacheck -p but does

no unnecessary work. setprivgrp can be used to set the behavior of
the chown command. Group quotas are not supported.

Commands are in /usr/fetc . Group quotas are not supported. The file-
system table is in /etc/fstab ; use the rq option to request quotas on
a particular filesystem. quotacheck -n numusers extends the size of
the quotas file to accommodate numusers users. quota -n limits the
display to local filesystems. IRIX does not have tunefs

The filesystem table is /etc/fstab ; quota and noquota options are
used to turn quotas on or off. Commands are in /usr/etc . Group quo-
tas are not supported.

Commands are in /ust/shin . Group quotas are supported. The file-
system table is /etc/fstab and the rq option is used to request quo-
tas, along with userquota and groupquota (see page 628).

Commands are in /sbin . The filesystem table is in /etc/fstab , and
userquota and groupquota are used to enable user and group quo-
tas. The rq option is not used. The quot command is not supported.

