
885

D
a

e
m

o
n

s29 Daemons

A daemon is a background process that performs a specific function or system task.
In keeping with the UNIX and Linux philosophy of modularity, daemons are pro-
grams rather than parts of the kernel. Many daemons start at boot time and continue
to run as long as the system is up. Other daemons are started when needed and run
only as long as they are useful.

“Daemon” was first used as a computer term by Mick Bailey, a British gentleman who
was working on the CTSS programming staff at MIT during the early 1960s.1 Mick
quoted the Oxford English Dictionary in support of both the meaning and the spell-
ing of the word. The words “daemon” and “demon” both come from the same root,
but “daemon” is an older form and its meaning is somewhat different. A daemon is
an attendant spirit that influences one’s character or personality. Daemons are not
minions of evil or good; they’re creatures of independent thought and will. Daemons
made their way from CTSS to Multics to UNIX to Linux, where they are so popular
that they need a superdaemon (xinetd or inetd) to manage them.

This chapter presents a brief overview of the most common Linux daemons. Not all
the daemons listed here are supplied with all Linux distributions, and not every dae-
mon supplied with some Linux distribution is listed here. Besides making you
more aware of how Linux works, a knowledge of what all the various daemons do
will make you look really smart when one of your users asks, “What does klogd do?”

Before inetd was written, all daemons started at boot time and ran continuously (or
more accurately, they blocked waiting for work to do). Over time, more and more

1. This bit of history comes from Jerry Saltzer at MIT, via Dennis Ritchie.

Daemons

886 Chapter 29 – Daemons

daemons were added to the system. The daemon population became so large that it
began to cause performance problems. In response, the Berkeley gurus developed
inetd, a daemon that starts other daemons as they are needed. inetd successfully
popularized this superdaemon model, which remains a common way to minimize
the number of processes running on a server. Most versions of UNIX and Linux now
use a combination of inetd and always-running daemons.

There are many daemons that system administrators should be intimately familiar
with, either because they require a lot of administration or because they play a large
role in the day-to-day operation of the system. Some daemons that are described here
in one or two lines have an entire chapter devoted to them elsewhere in this book. We
provide cross-references where appropriate.

We start this chapter by introducing a couple of very important system daemons (init
and cron) and then move on to a discussion of xinetd and inetd. Finally, we briefly
describe most of the daemons a system administrator is likely to wrestle with on our
four example distributions.

29.1 INIT: THE PRIMORDIAL PROCESS

init is the first process to run after the system boots, and in many ways it is the most
important daemon. It always has a PID of 1 and is an ancestor of all user processes
and all but a few system processes.

At startup, init either places the system in single-user mode or begins to execute the
scripts needed to bring the system to multiuser mode. When you boot the system
into single-user mode, init runs the startup scripts after you terminate the single-
user shell by typing exit or <Control-D>.

In multiuser mode, init is responsible for making sure that processes are available to
handle logins on every login-enabled device. Logins on serial ports are generally
handled by some variant of getty (e.g., agetty, mgetty, or mingetty; see page 857
for details). init also supervises a graphical login procedure that allows users to log
directly in to X Windows.

In addition to its login management duties, init also has the responsibility to exor-
cise undead zombie processes that would otherwise accumulate on the system. init’s
role in this process is described on page 56.

See page 856 for more
information about the
inittab file.

init defines several “run levels” that determine what set of system resources should
be enabled. There are seven levels, numbered 0 to 6. The name “s” is recognized as
a synonym for level 1 (single-user mode). The characteristics of each run level are
defined in the /etc/inittab file.

init usually reads its initial run level from the /etc/inittab file, but the run level can
also be passed in as an argument from the boot loader. If “s” is specified, init enters
single-user mode. Otherwise, it scans /etc/inittab for entries that apply to the re-
quested run level and executes their corresponding commands.

D
a

e
m

o
n

s

29.3 xinetd and inetd: manage daemons 887

The telinit command changes init’s run level once the system is up. For example,
telinit 4 forces init to go to run level 4 (which is unused on our example systems).
telinit’s most useful argument is q, which causes init to reread the /etc/inittab file.

Linux distributions generally implement an additional layer of abstraction on top of
the basic run-level mechanism provided by init. The extra layer allows individual
software packages to install their own startup scripts without modifying the system’s
generic inittab file. Bringing init to a new run level causes the appropriate scripts to
be executed with the arguments start or stop.

A more complete discussion of init and startup scripts begins on page 33.

29.2 CRON AND ATD: SCHEDULE COMMANDS

The cron daemon (known as crond on Red Hat) is responsible for running com-
mands at preset times. It accepts schedule files (“crontabs”) from both users and
administrators.

cron is frequently employed for administrative purposes, including management of
log files and daily cleanup of the filesystem. In fact, cron is so important to system
administrators that we have devoted an entire chapter to it. That chapter, Periodic
Processes, begins on page 150.

The atd daemon runs commands scheduled with the at command. Most versions of
Linux also include the anacron scheduler, which executes jobs at time intervals
rather than at specific times. anacron is particularly useful on systems that are not
always turned on, such as laptops.

29.3 XINETD AND INETD: MANAGE DAEMONS

xinetd and inetd are daemons that manage other daemons. They start up their cli-
ent daemons when there is work for them to do and allow the clients to die grace-
fully once their tasks have been completed.

The traditional version of inetd comes to us from the UNIX world, but most Linux
distributions have migrated to Panos Tsirigotis’s xinetd, a souped-up alternative
that incorporates security features similar to those formerly achieved through the
use of tcpd, the “TCP wrappers” package. xinetd also provides better protection
against denial of service attacks, better log management features, and a more flexi-
ble configuration language.

Unfortunately, inetd’s configuration file is not forward-compatible with that of
xinetd. We first discuss the more common xinetd and then take a look at inetd in a
separate section.

Among our example distributions, only Debian and Ubuntu use the standard inetd;
RHEL, Fedora, and SUSE all default to xinetd. You can convert any system to use the
nondefault daemon manager, but there’s no compelling reason to do so.

888 Chapter 29 – Daemons

xinetd and inetd only work with daemons that provide services over the network.
To find out when someone is trying to access one of their clients, xinetd and inetd
attach themselves to the network ports that would normally be managed by the qui-
escent daemons. When a connection occurs, xinetd/inetd starts up the appropriate
daemon and connects its standard I/O channels to the network port. Daemons must
be written with this convention in mind if they are to be compatible.

Some daemons (such as those associated with NIS and NFS) rely on a further layer
of indirection known as the Remote Procedure Call (RPC) system. RPC was origi-
nally designed and implemented by Sun as a way of promoting the sharing of infor-
mation in a heterogeneous networked environment. Port assignments for daemons
that use RPC are managed by the portmap daemon, which is discussed later in this
chapter.

Some daemons can be run in either the traditional fashion (in which they are started
once and continue to run until the system shuts down) or through xinetd/inetd.
Daemons discussed in this chapter are marked with an if they are xinetd/inetd-
compatible.

Because xinetd/inetd is responsible for managing many common network-based
services, it plays an important role in securing your system. It’s important to verify
that only services you need and trust have been enabled. On a new system, you will
almost certainly need to modify your default configuration to disable services that
are unnecessary or undesirable in your environment.

Configuring xinetd

xinetd’s main configuration file is traditionally /etc/xinetd.conf, although distribu-
tions commonly supply an /etc/xinetd.d configuration directory as well. Individual
packages can drop their config files into this directory without worrying about over-
riding the configurations of other packages.

The example below shows the setting of default parameters and the configuration of
an FTP service on a Red Hat Enterprise system.

defaults
{

instances = 60
log_type = SYSLOG authpriv
log_on_success = HOST PID
log_on_failure = HOST
cps = 25 30

}

service ftp
{

Unlimited instances because wu.ftpd does its own load management
socket_type = stream
protocol = tcp
wait = no

D
a

e
m

o
n

s

29.3 xinetd and inetd: manage daemons 889

user = root
server = /usr/sbin/wu.ftpd
server_args = -a
instances = UNLIMITED
only_from = 128.138.0.0/16
log_on_success += DURATION

}

includedir /etc/xinetd.d
...

Table 29.1 provides a mini-glossary of parameters.

Some xinetd parameters can accept assignments of the form += or -= (as seen in the
log_on_success value for the FTP server) to modify the default values rather than
replacing them outright. Only a few parameters are really required for each service.

Table 29.1 xinetd configuration parameters (not an exhaustive list)

Parameter Value Meaning

bind ipaddr/host Interface on which to make this service available
cps num waittime Limits overall connections per second
disable yes/no Disables service; easier than commenting it out
include path Reads listed path as a supplemental config file
includedir path Reads all files in the specified directory
instances num or

UNLIMITED
Maximum number of simultaneous instances
of a given service

log_on_failure special a Information to log for failures or access denials b

log_on_success special a Information to log for successful connections b

log_type special a Configures log file or syslog parameters
max_load num Disables service if load average > threshold
nice num Nice value of spawned server processes
no_access matchlist Denies service to specified IP addresses
only_from matchlist Accepts requests only from specified addresses
per_source num Limits number of instances per remote peer
protocol tcp/udp Service protocol
server path Path to server binary
server_args string Command-line arguments for server c

socket_type stream/dgram Uses stream for TCP services, dgram for UDP
user username User (UID) as whom the service should run
wait yes/no Should xinetd butt out until the daemon quits?

a. One or more values from a defined list too long to be worth reproducing in this table.

b. Note that the USERID directive used with these parameters causes xinetd to perform IDENT queries on
connections, often resulting in significant delays.

c. Unlike inetd, xinetd does not require the server command to be the first argument.

890 Chapter 29 – Daemons

Address match lists for the only_from and no_access parameters can be specified
in several formats. Most useful are CIDR-format IP addresses with an explicit mask
(as shown in the example) and host or domain names such as boulder.colorado.edu
and .colorado.edu—note the preceding dot. Multiple specifications can be separated
with a space (as in all xinetd lists).

xinetd can either log directly to a file or submit log entries to syslog. Since the vol-
ume of log information can potentially be quite high on a busy server, it may make
sense to use direct-to-file logging for performance reasons. Keep in mind that log-
ging to a file is less secure than logging to a remote server through syslog because a
hacker that gains access to the local system can doctor the log files.

xinetd can provide some interesting services such as forwarding of requests to an
internal host that is not visible to the outside world. It’s worth reviewing xinetd’s
man page to get an idea of its capabilities.

Configuring inetd

Debian and Ubuntu are the only major Linux distributions that still use the tradi-
tional inetd. This version of inetd consults /etc/inetd.conf to determine on which
network ports it should listen. The config file includes much the same information
as xinetd.conf, but it uses a tabular (rather than attribute/value list) format. Here’s a
(pared-down) example from a Debian system:

Example /etc/inetd.conf - from a Debian system

#:INTERNAL: Internal services
#echo stream tcp nowait root internal
#echo dgram udp wait root internal
...
#time stream tcp nowait root internal
#time dgram udp wait root internal

#:STANDARD: These are standard services.
#:BSD: Shell, login, exec and talk are BSD protocols.

#:MAIL: Mail, news and uucp services.
imap2 stream tcp nowait root /usr/sbin/tcpd /usr/sbin/imapd
imaps stream tcp nowait root /usr/sbin/tcpd /usr/sbin/imapd

#:INFO: Info services
ident stream tcp wait identd /usr/sbin/identd identd
...
#:OTHER: Other services
swat stream tcp nowait.400 root /usr/sbin/swat swat
finger stream tcp nowait nobody /usr/sbin/tcpd in.fingerd -w
391002/1-2 stream rpc/tcp wait root /usr/sbin/famd fam
...

The first column contains the service name. inetd maps service names to port num-
bers by consulting either the /etc/services file (for TCP and UDP services) or the
/etc/rpc file and portmap daemon (for RPC services). RPC services are identified

D
a

e
m

o
n

s

29.3 xinetd and inetd: manage daemons 891

by names of the form name/num and the designation rpc in column three. In the
example above, the last line is an RPC service.

The only other RPC service that is commonly managed by inetd is mountd, the
NFS mount daemon. Linux distributions seem to run this daemon the old-fash-
ioned way (by starting it at boot time), so you may have no RPC services at all in
your inetd.conf file.

On a host with more than one network interface, you can preface the service name
with a list of comma-separated IP addresses or symbolic hostnames to specify the
interfaces on which inetd should listen for service requests. For example, the line

inura:time stream tcp nowait root internal

provides the time service only on the interface associated with the name inura in
DNS, NIS, or the /etc/hosts file.

The second column determines the type of socket that the service will use and is
invariably stream or dgram. stream is used with TCP (connection-oriented) ser-
vices, and dgram is used with UDP; however, some services use both, e.g., bind.

The third column identifies the communication protocol used by the service. The
allowable types are listed in the protocols file (usually in /etc). The protocol is al-
most always tcp or udp. RPC services prepend rpc/ to the protocol type, as with
rpc/tcp in the preceding example.

If the service being described can process multiple requests at one time (rather than
processing one request and exiting), column four should be set to wait. This option
allows the spawned daemon to take over management of the port as long as it is run-
ning; inetd waits for the daemon to exit before resuming its monitoring of the port.
The opposite of wait is nowait; it makes inetd monitor continuously and fork a new
copy of the daemon each time it receives a request. The selection of wait or nowait
must correspond to the daemon’s actual behavior and should not be set arbitrarily.
When configuring a new daemon, check the inetd.conf file for an example configu-
ration line or consult the man page for the daemon in question.

The form nowait.400, used in the configuration line for swat, indicates that inetd
should spawn at most 400 instances of the server daemon per minute. The default is
more conservative, 40 instances per minute. Given the nature of this service (a web
administration tool for Samba), it’s not clear why the throttle threshold was raised.

The fifth column gives the username under which the daemon should run. It’s always
more secure to run a daemon as a user other than root if that is possible. In the
example above, in.fingerd would run as the user nobody (if the line were not com-
mented out).

The remaining fields give the fully qualified pathname of the daemon and its com-
mand-line arguments. The keyword internal indicates services whose implementa-
tions are provided by inetd itself.

892 Chapter 29 – Daemons

Many of the service entries in this example run their daemons by way of tcpd rather
than executing them directly. tcpd logs connection attempts and implements access
control according to the source of the connection attempt. In general, all services
should be protected with tcpd. This example configuration presents a potential se-
curity problem because swat, a file sharing configuration utility, is not protected.2

In the default inetd.conf shipped with Debian, the servers for rlogin, telnet, finger,
and rexec are no longer even listed. See the section Miscellaneous security issues on
page 685 for more security-related information.

See Chapter 10 for
more information
about syslog.

After you edit /etc/inetd.conf, send inetd a HUP signal to tell it to reread its config-
uration file and implement any changes you made. After signalling, wait a moment
and then check the log files for error messages related to your changes (inetd logs
errors to syslog under the “daemon” facility). Test any new services you have added
to be sure they work correctly.

The services file

After adding a new service to inetd.conf or xinetd.conf, you may also need to make
an entry for it in the /etc/services file. This file is used by several standard library
routines that map between service names and port numbers. xinetd actually allows
you to specify the port number directly, but it’s always a good idea to maintain a mas-
ter list of ports in the services file.

For example, when you type the command

$ telnet anchor smtp

telnet looks up the port number for the smtp service in the services file. Most sys-
tems ship with all the common services already configured; you need only edit the
services file if you add something new.

The services file is used only for bona fide TCP/IP services; similar information for
RPC services is stored in /etc/rpc.

Here are some selected lines from a services file (the original is ~570 lines long):

tcpmux 1/tcp # TCP port multiplexer
echo 7/tcp
echo 7/udp
…
ssh 22/tcp #SSH Remote Login Protocol
ssh 22/udp #SSH Remote Login Protocol
smtp 25/tcp mail
rlp 39/udp resource # resource location
name 42/tcp # IEN 116
domain 53/tcp # name-domain server
domain 53/udp
…

2. If you are not using tcpd to protect a service, the daemon’s first command-line argument should always
be the short name of the daemon itself. This requirement is not a peculiarity of inetd but a traditional
UNIX convention that is normally hidden by the shell.

D
a

e
m

o
n

s

29.4 Kernel daemons 893

The format of a line is

name port/proto aliases # comment

Services are generally listed in numerical order, although this order is not required.
name is the symbolic name of the service (the name you use in the inetd.conf or
xinetd.conf file). The port is the port number at which the service normally listens;
if the service is managed by inetd, it is the port that inetd will listen on.3

The proto stipulates the protocol used by the service; in practice, it is always tcp or
udp. If a service can use either UDP or TCP, a line for each must be included (as with
the ssh service above). The alias field contains additional names for the service (e.g.,
whois can also be looked up as nicname).

portmap: map RPC services to TCP and UDP ports

portmap maps RPC service numbers to the TCP/IP ports on which their servers are
listening. When an RPC server starts up, it registers itself with portmap, listing the
services it supports and the port at which it can be contacted. Clients query portmap
to find out how to get in touch with an appropriate server.

This system allows a port to be mapped to a symbolic service name. It’s basically
another level of abstraction above the services file, albeit one that introduces addi-
tional complexity (and security issues) without solving any real-world problems.

If the portmap daemon dies, all the services that rely on it (including inetd and
NFS) must be restarted. In practical terms, this means that it’s time to reboot the
system. portmap must be started before inetd for inetd to handle RPC services
correctly.

29.4 KERNEL DAEMONS

For architectural reasons, a few parts of the Linux kernel are managed as if they were
user processes. On older kernels, these processes could be identified by their low PIDs
and names that start with k, such as kupdate, kswapd, keventd, and kapm. The
naming is less consistent under the 2.6 kernels, but ps always shows the names of
kernel threads in square brackets.

For the most part, these processes deal with various aspects of I/O, memory man-
agement, and synchronization of the disk cache. They cannot be manipulated by
the system administrator and should be left alone.4

Table 29.2 on the next page briefly summarizes the functions of the major daemons
in the current complement. Daemons that include an N parameter in their names

3. Port numbers are not arbitrary. All machines must agree about which services go with which ports;
otherwise, requests will constantly be directed to the wrong port. If you are creating a site-specific ser-
vice, pick a high port number (greater than 1023) that is not already listed in the services file.

4. If you are familiar with the implementation of the kernel, it is occasionally useful to change these pro-
cesses’ execution priorities. However, this is not a standard administrative task.

894 Chapter 29 – Daemons

(as shown by ps) run separately on each CPU of a multi-CPU system; the N tells you
which copy goes with which CPU.

Another system daemon in this category, albeit one with a nonstandard name, is
mdrecoveryd. It’s part of the “multiple devices,” implementation, more commonly
known as RAID.

klogd: read kernel messages

klogd is responsible for reading log entries from the kernel’s message buffer and
forwarding them to syslog so that they can be routed to their final destination. It can
also process messages itself if configured to do so. See Kernel and boot-time logging
on page 206 for more information.

29.5 PRINTING DAEMONS

Several printing systems are in common use, and each has its own family of com-
mands and daemons that provide printing-related services. In some cases the fami-
lies have been hybridized; in others cases, multiple variants run on a single system.

cupsd: scheduler for the Common UNIX Printing System

See Chapter 23 for
more information
about CUPS.

CUPS provides a portable printing facility by implementing version 1.1 of the Inter-
net Printing Protocol. It allows remote users to print to their offices (or vice versa)
by using a web interface. CUPS has become quite popular and is most systems’ de-
fault printing manager. It is flexible enough to allow for remote authentication.

lpd: manage printing

lpd is responsible for the old-style BSD print spooling system. It accepts jobs from
users and forks processes that perform the actual printing. lpd is also responsible
for transferring print jobs to and from remote systems. lpd can sometimes hang and
then must be manually restarted.

Table 29.2 Major kernel daemons (2.6 kernels)

Daemon Function

ksoftirqd/N Handles software interrupts when the load is high
kacpid Deals with the ACPI subsystem
kblockd/N Blocks subsystem work
aio/N Retries asynchronous I/Os
kswapdN Moves pages to swap
ata/N Does processing for serial ATA support
scsi_eh_N Performs SCSI error handling
kjournald Supports journaling filesystems
events/N Does generic work queue processing

D
a

e
m

o
n

s

29.6 File service daemons 895

Your system might have either the original flavor of lpd or the extra-crispy version
that’s part of the LPRng package. See Chapter 23, Printing, for more information
about these alternatives.

29.6 FILE SERVICE DAEMONS

The following daemons are part of the NFS or Samba file sharing systems. We give
only a brief description of their functions here. NFS is described in detail in Chapter
16, and Samba is covered starting on page 828.

rpc.nfsd: serve files

rpc.nfsd runs on file servers and handles requests from NFS clients. In most NFS
implementations, nfsd is really just a part of the kernel that has been dressed up as a
process for scheduling reasons. Linux actually sports two different implementations,
one of which follows this convention and one of which runs in user space. The ker-
nel implementation is more popular and is most distributions’ default.

rpc.nfsd accepts a single argument that specifies how many copies of itself to fork.
Some voodoo is involved in picking the correct number of copies; see page 492.

rpc.mountd: respond to mount requests

rpc.mountd accepts filesystem mount requests from potential NFS clients. It veri-
fies that each client has permission to mount the requested directories. rpc.mountd
consults the /var/state/nfs/xtab file to determine which applicants are legitimate.

amd and automount: mount filesystems on demand

amd and automount are NFS automounters, daemons that wait until a process at-
tempts to use a filesystem before they actually mount it. The automounters later un-
mount the filesystems if they have not been accessed in a specified period of time.

The use of automounters is very helpful in large environments where dozens or hun-
dreds of filesystems are shared on the network. Automounters increase the stability
of the network and reduce configuration complexity since all systems on the network
can share the same amd or automountd configuration. We cover the use of the
standard Linux automounter in detail starting on page 497.

rpc.lockd and rpc.statd: manage NFS locks

Although rpc.lockd and rpc.statd are distinct daemons, they always run as a team.
rpc.lockd maintains advisory locks (a la flock and lockf) on NFS files. rpc.statd
allows processes to monitor the status of other machines that are running NFS.
rpc.lockd uses rpc.statd to decide when to attempt to communicate with a remote
machine.

896 Chapter 29 – Daemons

rpciod: cache NFS blocks

rpciod caches read and write requests on NFS clients. It performs both read-ahead
and write-behind buffering and greatly improves the performance of NFS. This dae-
mon is analogous to the biod and nfsiod daemons found on other systems, although
it is structurally somewhat different.

rpc.rquotad: serve remote quotas

rpc.rquotad lets remote users check their quotas on filesystems they have mounted
with NFS. The actual implementation of quota restrictions is still performed on the
server; rpc.rquotad just makes the quota command work correctly.

smbd: provide file and printing service to Windows clients

smbd is the file and printer server in the Samba suite. It provides file and printer
sharing service through the Windows protocol known variously as SMB or CIFS.
See page 828 for more details.

nmbd: NetBIOS name server

nmbd is another component of Samba. It replies to NetBIOS name service requests
generated by Windows machines. It also implements the browsing protocol that Win-
dows machines use to populate the My Network Places folder and makes disks
shared from the local host visible there. nmbd can also be used as a WINS server.

29.7 ADMINISTRATIVE DATABASE DAEMONS

Several daemons are associated with Sun’s NIS administrative database system,
which is described in Chapter 17, Sharing System Files. Although NIS originated at
Sun, it is now used on many other vendors’ systems as well, including Linux.

ypbind: locate NIS servers

The ypbind daemon runs on all NIS clients and servers. It locates an NIS server to
which queries can be directed. ypbind does not actually process requests itself; it
just tells client programs which server to use.

ypserv: NIS server

ypserv runs on all NIS servers. ypserv accepts queries from clients and responds
with the requested information. See page 517 for information on how to configure
the machines that run ypserv.

rpc.ypxfrd: transfer NIS databases

rpc.ypxfrd efficiently transfers NIS databases to slave servers. A slave initiates a
transfer with the ypxfr command. Whenever a database is changed on the master, it
should immediately be pushed out to all the slaves so that the NIS servers remain
consistent with one another.

D
a

e
m

o
n

s

29.8 Electronic mail daemons 897

lwresd: lightweight resolver library server

lwresd provides a quick method of caching address-to-hostname and hostname-to-
address lookups. It’s contacted by a stub resolver that is part of the system’s standard
libraries and is called directly by many programs. The library and daemon commu-
nicate through a simple UDP protocol.

nscd: name service cache daemon

nscd caches the results of calls to the standard C library routines in the getpw*,
getgr*, and gethost* families, which look up data that was traditionally stored in the
passwd, group, and hosts files. These days, the range of potential sources is larger
and includes options such as NIS and DNS. nscd does not actually know where the
data comes from; it simply caches results and uses them to short-circuit subsequent
library calls. Caching policy is set in the /etc/nscd.conf file.

29.8 ELECTRONIC MAIL DAEMONS

In addition to the core sendmail and Postfix mail delivery systems, which are both
in widespread use, several daemons facilitate remote access to mailboxes.

sendmail: transport electronic mail

sendmail’s tasks include accepting messages from users and remote sites, rewriting
addresses, expanding aliases, and transferring mail across the Internet. sendmail is
an important and very complex daemon. Refer to Chapter 18, Electronic Mail, for
the complete scoop.

smtpd: Simple Mail Transport Protocol daemon

smtpd listens on port 25 for incoming email messages and forwards them to your
back-end transport system for further processing. See pages 540 and 624 for more
information about the use of smtpd in the sendmail and Postfix systems.

popd: basic mailbox server

The popd daemon implements the Post Office Protocol (POP). This protocol is
commonly used by non-Linux systems to receive electronic mail.

imapd: deluxe mailbox server

The imapd daemon implements the Internet Message Access Protocol, IMAP, which
is a more festive and featureful alternative to POP. It allows PC-based users (or Linux
users with IMAP-enabled mail readers) to access their email from a variety of loca-
tions, with mail folders being stored on the Linux server. Check out www.imap.org
for more information about IMAP.

898 Chapter 29 – Daemons

29.9 REMOTE LOGIN AND COMMAND EXECUTION DAEMONS

The ability to log in and execute commands over the net was one of the earliest mo-
tivations for the development of UNIX networking, and this facility is still a bread-
and-butter component of system administration today. Unfortunately, it took the
UNIX community several decades to achieve a mature appreciation of the security
implications of this technology. Modern production systems should be using SSH
(sshd) and virtually nothing else.

sshd: secure remote login server

sshd provides services that are similar to in.rlogind, but its sessions are transported
(and authenticated) across an encrypted pipeline. A variety of encryption algorithms
are available. Because of the harsh environment of the Internet today, you must allow
shell access from the Internet only through a daemon such as this—not in.rlogind
or in.telnetd. You can find more information about sshd starting on page 697.

in.rlogind: obsolete remote login server

in.rlogind was the long-ago standard for handling remote logins. When invoked by
inetd, it tries to automatically authenticate the remote user by examining the local
user’s ~/.rhosts file and the system-wide /etc/hosts.equiv. If automatic authentica-
tion is successful, the user is logged in directly. Otherwise, in.rlogind executes the
login program to prompt the user for a password. Because of its cheap ‘n’ easy au-
thentication, in.rlogind is a major security hazard. See page 685 for more comments
on this subject.

in.telnetd: yet another remote login server

in.telnetd is similar to in.rlogind, except that it uses the TELNET protocol. This
protocol allows the two sides (client and server) to negotiate flow control and duplex
settings, making it a better choice than in.rlogind for links that are slow or unreli-
able. Like rlogin, telnet transmits plaintext passwords across the network. Its use is
therefore discouraged in modern networks. However, many non-Linux systems sup-
port telnet.

in.rshd: remote command execution server

in.rshd handles remote command execution requests from rsh and rcmd. The au-
thentication process enforced by in.rshd is similar to that of in.rlogind, except that
if automatic authentication does not work, in.rshd denies the request without al-
lowing the user to supply a password. in.rshd is also the server for rcp (remote
copy). Like in.rlogind, in.rshd has become something of a security albatross and is
invariably disabled. See page 685 for more information.

29.10 BOOTING AND CONFIGURATION DAEMONS

In the 1980s, the UNIX world was swept by a wave of diskless workstation mania.
These machines booted entirely over the network and performed all their disk I/O

D
a

e
m

o
n

s

29.10 Booting and configuration daemons 899

through a remote filesystem technology such as NFS. As disk prices dropped and
speeds increased, interest in diskless workstations quickly faded. They could come
back into fashion at any moment, however, like the platform shoes of the 1970s. The
two main remnants of the diskless era are a plethora of daemons designed to sup-
port diskless systems and the bizarre organization of most vendors’ filesystems.

For the curious, we discuss diskless systems themselves in some additional detail
starting on page 232.

Although diskless workstations are not common anymore, their booting protocols
have been usurped by other devices. Most manageable network hubs and network
printers boot by using some combination of the services listed in this section.

dhcpd: dynamic address assignment

The Dynamic Host Configuration Protocol (DHCP) provides PCs, laptops, and other
“mobile” platforms with information about their IP addresses, default gateways, and
name servers at boot time. dhcpd is the daemon that implements this service under
Linux. You can find more information about DHCP on page 311. A fancier elabora-
tion of DHCP called PXE (Pre-boot eXecution Environment) helps compatible ma-
chines boot from the network without the need for a local boot device; see page 224
for more details.

in.tftpd: trivial file transfer server

in.tftpd implements a file transfer protocol similar to that of ftpd, but much, much
simpler. Many diskless systems use TFTP to download their kernels from a server.
in.tftpd does not perform authentication, but it is normally restricted to serving the
files in a single directory (usually /tftpboot). Since anything placed in the TFTP
directory is accessible to the entire network, the directory should contain only boot
files and should not be publicly writable.

rpc.bootparamd: advanced diskless life support

rpc.bootparamd uses the /etc/bootparams file to tell diskless clients where to find
their filesystems. rpc.bootparamd service is often used by machines that get their
IP addresses by using RARP and that use NFS to mount their filesystems.

hald: hardware abstraction layer (HAL) daemon

hald collects information about the system’s hardware from several sources. It pro-
vides a live device list through D-BUS.

udevd: serialize device connection notices

udevd is a minor part of the udev dynamic device-naming system. It allows for the
proper serialization of hot-plug events, which the kernel can sometimes communi-
cate out of order to user space.

900 Chapter 29 – Daemons

29.11 OTHER NETWORK DAEMONS

The following daemons all use Internet protocols to handle requests. However,
many of these “Internet” daemons actually spend the majority of their time servic-
ing local requests.

talkd: network chat service

Connection requests from the talk program are handled by talkd. When it receives
a request, talkd negotiates with the other machine to set up a network connection
between the two users who have executed talk.

snmpd: provide remote network management service

snmpd responds to requests that use the Simple Network Management Protocol
(SNMP) protocol. SNMP standardizes some common network management opera-
tions. See page 659 for more information about SNMP.

ftpd: file transfer server

See page 734 for
more information
about ftpd.

ftpd is the daemon that handles requests from ftp, the Internet file transfer pro-
gram. Many sites disable it, usually because they are worried about security. ftpd
can be set up to allow anyone to transfer files to and from your machine.

A variety of ftpd implementations are available for Linux systems. If you plan to run
a high-traffic server or need advanced features such as load management, it might
be wise to investigate the alternatives to your distribution’s default ftpd.

WU-FTPD, developed at Washington University, is one of the most popular alterna-
tives to the standard ftpd. See www.wu-ftpd.org for more information.

rsyncd: synchronize files among multiple hosts

rsyncd is really just a link to the rsync command; the --daemon option turns it into
a server process. rsyncd facilitates the synchronization of files among hosts. It’s
essentially an efficient and security-aware version of rcp. rsync is a real treasure
trove for system administrators, and in this book we’ve described its use in a couple
of different contexts. See page 508 for general information and some tips on using
rsync to share system files. rsync is also a large part of many sites’ internal installa-
tion processes.

routed: maintain routing tables

routed maintains the routing information used by TCP/IP to send and forward pack-
ets on a network. routed deals only with dynamic routing; routes that are statically
defined (that is, wired into the system’s routing table with the route command) are
never modified by routed. routed is relatively stupid and inefficient, and we recom-
mend its use in only a few specific situations. See page 343 for a more detailed dis-
cussion of routed.

D
a

e
m

o
n

s

29.11 Other network daemons 901

gated: maintain complicated routing tables

gated understands several routing protocols, including RIP, the protocol used by
routed. gated translates routing information among various protocols and is very
configurable. It can also be much kinder to your network than routed. See page 344
for more information about gated.

named: DNS server

named is the most popular server for the Domain Name System. It maps hostnames
into network addresses and performs many other feats and tricks, all using a distrib-
uted database maintained by nameds everywhere. Chapter 15, DNS: The Domain
Name System, describes the care and feeding of named.

syslogd: process log messages

See page 209 for
more information
about syslog.

syslogd acts as a clearing house for status information and error messages produced
by system software and daemons. Before syslogd was written, daemons either wrote
their error messages directly to the system console or maintained their own private
log files. Now they use the syslog library routine to transfer the messages to syslogd,
which sorts them according to rules established by the system administrator.

in.fingerd: look up users

in.fingerd provides information about the users that are logged in to the system. If
asked, it can also provide a bit more detail about individual users. in.fingerd does
not really do much work itself: it simply accepts lines of input and passes them to the
local finger program.

finger can return quite a bit of information about a user, including the user’s login
status, the contents of the user’s GECOS field in /etc/passwd, and the contents of the
user’s ~/.plan and ~/.project files.

If you are connected to the Internet and are running in.fingerd, anyone in the world
can obtain this information. in.fingerd has enabled some really neat services (such
as the Internet white pages), but it has also enabled people to run a variety of scams,
such as finding people to cold-call and prospecting for spammable addresses. Some
sites have responded to this invasion by turning off in.fingerd, while others just re-
strict the amount of information it returns. Don’t assume that because in.fingerd is
simple, it is necessarily secure—a buffer overflow attack against this daemon was
exploited by the original Internet worm of 1988.

httpd: World Wide Web server

httpd lets your site become a web server. httpd can send text, pictures, and sound to
its clients. See Chapter 21, Web Hosting and Internet Servers, for more information
about serving up web pages.

902 Chapter 29 – Daemons

29.12 NTPD: TIME SYNCHRONIZATION DAEMON

As computers have grown increasingly interdependent, it has become more and more
important for them to share a consistent idea of time. Synchronized clocks are essen-
tial for correlating log file entries in the event of a security breach, and they’re also
important for a variety of end-user applications, from joint development of software
projects to the processing of financial transactions.

ntpd5 implements the Network Time Protocol, which allows computers to synchro-
nize their clocks to within milliseconds of each other. The first NTP implementation
started around 1980 with an accuracy of only several hundred milliseconds. Today, a
new kernel clock model can keep time with a precision of up to one nanosecond.
The latest version of the protocol (version 4, documented in RFC2783) maintains
compatibility with the previous versions and adds easy configuration and some se-
curity features.

NTP servers are arranged in a hierarchy, each level of which is called a “stratum.”
The time on stratum 1 servers is typically slaved to an external reference clock such
as a radio receiver or atomic clock. Stratum 2 servers set their clocks from Stratum 1
servers and act as time distribution centers. Up to 16 strata are provided for. To de-
termine its own stratum, a time server simply adds 1 to the stratum of the highest-
numbered server to which it synchronizes. A 1999 survey of the NTP network by
Nelson Minar indicated that there were (at that time) 300 servers in stratum 1;
20,000 servers in stratum 2; and more than 80,000 servers in stratum 3.6

Today, NTP clients can access a number of reference time standards, such as those
provided by WWV and GPS. A list of authoritative U.S. Internet time servers main-
tained by the National Institute of Standards and Technology can be found at

www.boulder.nist.gov/timefreq/service/time-servers.html

Most ISPs maintain their own set of time servers, which should be closer in network
terms for their downstream clients (and if NTP works correctly, just as accurate).

ntpd implements both the client and server sides of the NTP protocol. It reads
/etc/ntp.conf at startup. In the config file you can specify access, client networks,
time servers, multicast clients, general configuration, and authentication; but don’t
be scared off—it’s all pretty self-explanatory.

Debian and Ubuntu don’t seem to include ntpd by default, but it’s readily available
through apt-get. You can also obtain the current software from ntp.isc.org.

You can also use the quick and dirty ntpdate utility to set the system’s clock from an
NTP server. This is a less desirable solution than ntpd because it can make the flow
of time appear discontinuous. It is especially harmful to set the clock back suddenly,
since programs sometimes assume that time is a monotonically increasing function.

5. This daemon was also known as xntpd in earlier incarnations.
6. See www.media.mit.edu/~nelson/research/ntp-survey99

D
a

e
m

o
n

s

29.13 Exercises 903

ntpd uses the gentler adjtimex system call to smooth the adjustment of the system’s
clock and prevent large jumps backward or forward. adjtimex biases the speed of
the system’s clock so that it gradually falls into correct alignment. When the system
time matches the current objective time, the bias is cancelled and the clock runs
normally.

29.13 EXERCISES

E29.1 Using ps, determine which daemons are running on your system. Also
determine which daemons are available to run through inetd.conf or
xinetd.conf. Combine the lists and describe what each daemon does,
where it is started, whether multiple copies can (or do) run at the same
time, and any other attributes you can glean.

E29.2 In the lab, install and set up the network time daemon, ntpd.

a) How do you tell if your system has the correct time?

b) Using the date command, manually set your system time to be 15
seconds slow. How long does it (or will it) take for the time become
correct?

c) Manually set your system time a month ahead. How does ntpd re-
spond to this situation?

(Requires root access.)

E29.3 In the lab, use a tool such as netstat to determine what ports are in a
“listening” state on your machine.

a) How can you reconcile the netstat information with what is found in
inetd.conf or xinetd.conf? If there is a discrepancy, what is going on?

b) Install the nmap tool on a different machine. Run a port scan target-
ing your system to verify what you learned in part a. What (if any)
additional information did you learn from nmap that wasn’t obvious
from netstat? (See page 688 for more information about nmap.)

