48 The X Window System

1412

T T e,

S

The X Window System, also called X11 or simply X, is the foundation for most
graphical user environments for UNIX and Linux. X is the natural successor to a
window system called (believe it or not) W, which was developed as part of MIT’s
Project Athena in the early 1980s. Version 10 of the X Window System, released
in 1985, was the first to achieve widespread deployment, and version 11 (X11) fol-
lowed shortly thereafter. Thanks to the system’s relatively liberal licensing terms, X
spread quickly to other platforms, and multiple implementations emerged. Much
as in the case of TCP/IP, X’s elegant architecture and flexibility have positioned it
as the world’s predominant non-Windows GUI.

In 1988, the MIT X Consortium was founded to set the overall direction for the
X protocol. Over the next decade, this group and its successors issued a stream of
protocol updates. X11R7.5 is today’s latest and greatest, with the trend apparently
heading toward adding new numbers to the version designation instead of incre-
menting the existing ones.

XFree86 became the de facto X server implementation for most platforms until a
licensing change in 2004 motivated many systems to switch to a fork of XFree86
that was unencumbered by the new licensing clause. That fork is maintained by the
nonprofit X.Org Foundation and is the predominant implementation in use today.

1413

In addition, the X.Org server has been ported to Windows for use in the Cygwin
Linux compatibility environment. (Several commercial X servers for Windows are
also available; see page 1436 for more information.)

This chapter describes the X.Org version of X, which is used by all of our example
systems except HP-UX. The implementations of X.Org and XFree86 have diverged
architecturally, but most of the administrative details remain the same. It is often
possible to substitute xf86 for xorg in commands and filenames to guess at the ap-
propriate XFree86 version.

Solaris systems through version 10 included both the X.Org server and Xsun, yet
another implementation of X.! Xsun remains common on SPARC systems running
Solaris 10, but x86 systems typically run X.Org. However, X.Org now supports
SPARC, and the OpenSolaris project has stated that X.Org will be the only support-
ed X platform in the future. Therefore, we do not discuss Xsun here.

By default, AIX does not include an X Window System environment. To install one,
run smitty easy-install, select the lpp library source, and then choose either CDE
(for the traditional IBM-blessed Motif platform) or KDE (for the more modern
option).? What you get is a highly customized version of the X.Org environment
that has been stripped down to look more like the older X systems of the Motif era.
However, it supports X11R7.5 under the hood.

The X Window System can be broken down into a few key components. First, it
provides a display manager whose main job is to authenticate users, log them in,
and start up an initial environment from startup scripts. The display manager also
starts the X server, which defines an abstract interface to the system’s bitmapped
displays and input devices (e.g., keyboard and mouse). The startup scripts also run
a window manager, which allows the user to move, resize, minimize, and maximize
windows, as well as to manage separate virtual desktops. Finally, at the lowest level,
applications are linked to a widget library that implements high-level user inter-
face mechanisms such as buttons and menus. Exhibit A illustrates the relationship
between the display manager, the X server, and client applications.

The X server understands only a very basic set of drawing primitives over a net-
work API; it does not define a programming interface to high-level entities such as
buttons, text boxes, menus, and sliders. This design achieves two important goals.
First, it allows the X server to run on a computer that is completely separate from
that of the client application. Second, it allows the server to support a variety of
different window managers and widget sets.

. Xsun included support for Display PostScript, which once upon a time was thought to be the display
language of the future.

. Itis possible, but not recommended, to have both environments installed simultaneously. See page
1430 for more information about desktop environments.

1414

Chapter 48 The X Window System

Exhibit A The X client/server model

48.1

Display manager [,

+ ekt kogin and pearward
+ Auns stariup o pes
+ Hainid ks XD ool prodacod

~ ¥ client
l l i ¥ cliemnt
¥ server
M d $
« Wiandgas mspaYy
.r.lm:._;!::hpap.‘:d-:-.-b::: Window manager

Application developers have their choice of several common widget libraries and
user interface standards. Unfortunately, the choice often depends more on religious
affiliation than on any real design considerations. Although freedom of choice is
good, X’s UI agnosticism and lack of design leadership did result in many years of
poor user interfaces. Fortunately, the fit and finish of the mainstream X environ-
ments has improved markedly. Both the KDE and GNOME desktop environments
sport modern web browsers, user-friendly file managers, and modern multimedia
capabilities.

[] - Widgetibrary

In this chapter, we explain how to run programs on a remote display and how to
enable authentication. We then discuss how to configure the X.Org server and how
to troubleshoot configuration errors. Finally, we touch briefly on some of the avail-
able window managers and desktop environments.

THE DISPLAY MANAGER

The display manager presents the user with a (graphical) login screen and is usual-
ly the first thing a user sees when sitting down at the computer. It is not required;
many users disable the display manager and start X from the text console or from
their .login script by running startx (which itself is a wrapper for the xinit pro-
gram, which starts the X server).

xdm (for X display manager) is the original display manager, but modern replace-
ments such as gdm (the GNOME display manager) and kdm (the KDE display
manager) deliver additional features and are more aesthetically pleasing. The dis-
play manager can manage remote logins to other X servers through the XDMCP
protocol, and it can also handle display authentication (see Client authentication
on page 1417).

Configuration files in the xdm, gdm, or kdm subdirectory of /etc/X11 specify how
the display manager will run. For example, you can edit the Xservers file to change
the display number used for this server if multiple servers will be running on other

See page 1041 for
more information

about PAM.

48.2

Process for running an X application 1415

virtual terminals. Or, you might alter the server layout with the -layout option if
you have defined layouts to suit multiple systems.

In the typical scenario, the display manager prompts for a username and password.
The user’s password is then authenticated according to the PAM configuration
specified in /etc/pam.d/xdm (or gdm/kdm if you are using the GNOME or KDE
display managers). The login screen can also offer several alternative desktop en-
vironments, including the important failsafe option discussed below.

The display manager’s final duty is to execute the Xsession shell script, which sets
up the user’s desktop environment. The Xsession script, also most often found in
/etc/X11/{xdm,gdm,kdm}, is a system-wide startup script. It sets application de-
faults, installs standard key bindings, and selects language settings. The Xsession
script then executes the user’s own personal startup script, usually ~/.xsession, to
start up the window manager, task bar, helper applets, and possibly other programs.
GNOME and KDE also have their own startup scripts that configure the user’s
desktop in accordance with GNOME’s and KDE’s configuration tools; this scheme
is less error-prone than users’ editing of their own startup scripts.

When the execution of ~/.xsession completes, the user is logged out of the system
and the display manager goes back to prompting for a username and password.
Therefore, ~/.xsession must start all programs in the background (by appending
an & to the end of each command) except for the last one, which is normally the
window manager. (If all commands in ~/.xsession are run in the background, the
script terminates right away and the user is logged out immediately after logging
in.) With the window manager as the final, foreground process, the user is logged
out only after the window manager exits.

The failsafe login option lets users log in to fix their broken startup scripts. This
option can usually be selected from the display manager’s login screen. It opens
only a simple terminal window; once the window closes, the system logs the user
out. Every system should allow the failsafe login option; it helps users fix their own
messes rather than having to page you in the middle of the night.

Forgetting to leave a process in the foreground is the most common startup prob-
lem, but it’s hardly the only possibility. If the cause of problems is not obvious, you
may have to refer to the ~/.xsession-errors file, which contains the output of the
commands run from ~/.xsession. Look for errors or other unexpected behavior. In
a pinch, move the ~/.xsession script aside and make sure you can log in without it.
Then restore one or two lines at a time until you find the offending line.

PROCESS FOR RUNNING AN X APPLICATION

The process required to run an X application may at first seem overly complex.
However, you will soon discover the flexibility afforded by the client/server display
model. Because display updates are transmitted over the network, an application
(the client) can run on a completely separate computer from the one that displays

1416

See page XXX for
more information
about SSH.

See page 516 for
more information
about DNS resolver
configuration.

Chapter48 The XWindow System

its graphical user interface (the server). An X server can have connections from
many different applications, all of which run on separate computers.

To make this model work, clients must be told what display to connect to and what
screen to inhabit on that display. Once connected, clients must authenticate them-
selves to the X server to ensure that the person sitting in front of the display has
authorized the connection.

Even with authentication, X’s intrinsic security is weak. You can manage connec-
tions somewhat more securely by routing them through SSH (see page 1418). We
strongly recommend the use of SSH for X connections over the Internet. It’s not
unreasonable for local traffic, either.

The DISPLAY environment variable

X applications consult the DISPLAY environment variable to find out where to
display themselves. The variable contains the hostname or IP address of the server,
the display number (identifying the particular instance of an X server to connect
to), and an optional screen number (for displays with multiple monitors). When
applications run on the same computer that displays their interfaces, you can omit
most of these parameters.

The following example shows both the format of the display information and the
bash syntax used to set the environment variable:

client$ DISPLAY=servername.domain.com:10.2; export DISPLAY

This setting points X applications at the machine servername.domain.com, display
10, screen 2. Applications establish a TCP connection to the server on port num-
ber 6000 plus the display number (in this example, port 6010), where the X server
handling that display should be listening.

Keep in mind that every process has its own environment variables. When you set
the DISPLAY variable for a shell, its value is inherited only by programs that you
run from that shell. If you execute the commands above in one xterm and then try
to run your favorite X application from another, the application won't have access
to your carefully constructed DISPLAY variable.

Another point worth mentioning is that although X applications send their graphi-
cal displays to the designated X server, they still have local stdout and stderr chan-
nels. Some error output may still come to the terminal window from which an X
application was run.

If the client and server are both part of your local organization, you can usually
omit the server’s full domain name from the DISPLAY variable, depending on how
your name server’s resolver has been configured. Also, since most systems run only
a single X server, the display is usually 0. The screen number can be omitted, in
which case screen 0 is assumed. Ergo, most of the time it’s fine to set the value of
DISPLAY to servername:0.

Process for running an X application 1417

If the client application happens to be running on the same machine as the X serv-
er, you can simplify the DISPLAY variable even further by omitting the hostname.
This feature is more than just cosmetic: with a null hostname, the client libraries
use a UNIX domain socket instead of a network socket to contact the X server. In
addition to being faster and more efficient, this connection method bypasses any
firewall restrictions on the local system that are trying to keep out external X con-
nections. The simplest possible value for the DISPLAY environment variable, then,
is simply “:0”

Client authentication

Although the X environment is generally thought to be relatively insecure, every
precaution helps prevent unauthorized access. In the days before security was such
a pressing concern, it was common for X servers to welcome connections from any
client running on a host that had been marked as safe with the xhost command.
But since any user on that host could then connect to your display and wreak hav-
oc (either intentionally or out of confusion), the xhost method of granting access
to clients was eventually deprecated. We do not discuss it further.

The most prevalent alternative to host-based security is called magic cookie au-
thentication. While the thought of magic cookies might inspire flashbacks in some
of our readers, in this context they are used to authenticate X connections. The
basic idea is that the X display manager generates a large random number, called
a cookie, early in the login procedure. The cookie for the server is written to the
~/.Xauthority file in the user’s home directory. Any clients that know the cookie
are allowed to connect. Users can run the xauth command to view existing cookies
and to add new ones to this file.

The simplest way to show how this works is with an example. Suppose you have
set your DISPLAY variable on the client system to display X applications on the
machine at which you are sitting. However, when you run a program, you get an
error that looks something like this:

client$ xprogram -display server:0
X1ib: connection to "server:0.0" refused by server
xprogram: unable to open display 'server:0'

This message tells you that the client does not have the right cookie, so the remote
server refused the connection. To get the right cookie, log in to the server (which
you have probably already done if you are trying to display on it) and list the serv-
er’s cookies by running xauth list:

server$ xauth list

server:0 MIT-MAGIC-COOKIE-1 f9d888df6077819ef4d788fab778dc9f

server/unix:0 MIT-MAGIC-COOKIE-1 f9d888df6077819ef4d788fab778dcof
localhost:0 MIT-MAGIC-COOKIE-1 ch6cbf9e5c24128749feddd47f0e@779

1418

See page XXX for
more information
about SSH.

Chapter48 The XWindow System

Each network interface on the server has an entry. This example shows a cookie
for the Ethernet, a cookie for the UNIX domain socket used for local connections,
and a cookie for the localhost loopback network interface.

The easiest way to get the cookie onto the client (when not using SSH, which nego-
tiates the cookie for you) is with good old cut-and-paste. Most terminal emulators
(e.g., xterm') let you select text with the mouse and paste it into another window,
usually by pressing the middle mouse button. Conveniently, the xauth add com-
mand accepts as input the same format that xauth list displays. You can add the
cookie to the client like this:

client$ xauth add server:0 MIT-MAGIC-COOKIE-1
9d888df6077819ef4d788fab778dc9f

You should verify that the cookie was added properly by running xauth list on the
client. With the DISPLAY environment variable set and the correct magic cookie
added to the client, applications should now display correctly on the server.

If you are having trouble getting cookies to work, you can drop back temporarily
to xhost authentication just to verify that there are no other problems (for example,
firewalls or local network restrictions that are preventing the client from accessing
the server). Always run xhost - (that is, xhost with a dash as its only argument) to
disable xhost authentication once your test is complete.

X connection forwarding with SSH

Magic cookies increase security, but they’re hardly foolproof. Any user who can
obtain your display’s cookie can connect to the display and run programs that
monitor your activities. Even without your cookie, the X protocol transfers data
over the network without encryption, allowing it to be sniffed by virtually anyone.

You can boost security with SSH, the secure shell protocol. SSH provides an au-
thenticated and encrypted terminal service. However, SSH can also forward arbi-
trary network data, including X protocol data, over a secure channel. X forwarding
is similar to generic SSH port forwarding, but because SSH is X-aware, you gain
some additional features, including a pseudo-display on the remote machine and
the negotiated transfer of magic cookies.

You typically ssh from the machine running the X server to the machine on which
you want to run X programs. This arrangement can be confusing to read about be-
cause the SSH client is run on the same machine as the X server, and it connects to an
SSH server that is on the same machine as the X client applications. To make it worse,
the virtual display that SSH creates for your X server is local to the remote system.
Exhibit B on the next page shows how X traffic flows through the SSH connection.

1. Or aixterm on AIX. Clever, hmm?

Process for running an X application 1419

Exhibit B Using SSH with X

Se 55H conne
S5H client m—mr S5H server
;"""""'1.‘
F *
Kserver (W *l X dient virual
DISPLAY=10.0 DISPLAY=:12.0
X server machine X client machine

Your DISPLAY variable and authentication information are set up automatically
by ssh. The display number starts at :10.0 and increments for each SSH connection
that is forwarding X traffic.

An example might help show the sequence.

x-server$ ssh —v =X x-client.mydomain.com
SSH-2.0-0penSSH_5.1

debugl: Reading configuration data /home/boggs/.ssh/config
debugl: Reading configuration data /etc/ssh/ssh_config

debugl: Applying options for *

debugl: Connecting to x-client.mydomain.com [192.168.15.9] port 22.
debugl: Connection established.

Enter passphrase for key '/home/boggs/.ssh/id_rsa':

debugl: read PEM private key done: type RSA

debugl: Authentication succeeded (publickey).

debugl: Entering interactive session.

debugl: Requesting X11 forwarding with authentication spoofing.
debugl: Requesting authentication agent forwarding.

x-client$

You can see from the last two lines that the client is requesting forwarding for X11
applications. X forwarding must be enabled on both the SSH server and the SSH
client, and the client must still have the correct cookie for the X server. If things do
not seem to be working right, try the -X and -v flags as shown above (for Open--
SSH) to explicitly enable X forwarding and to request verbose output.' Also check
the global SSH configuration files in /etc/ssh to make sure that X11 forwarding
has not been administratively disabled. Once logged in, you can check your dis-
play and magic cookies:

x—-client$ echo $DISPLAY
localhost:12.0
x-client$ xauth list

1. Note that ssh also has a -Y flag that trusts all client connections. This feature may solve some for-
warding problems, but use it only with extreme caution.

1420

48.3

Chapter48 The XWindow System

x-client/unix:12 MIT-MAGIC-COOKIE-1 a54b67121eb94c8a807f3ab0a67aS
1fe

Notice that the DISPLAY points to a virtual display on the SSH server. Other SSH
connections (both from you and from other users) are assigned different virtual
display numbers. With the DISPLAY and cookie properly set, the client applica-
tion can now be run.

x-client$ xeyes

debugl: client_input_channel_open: ctype x11 rchan 4 win 65536 max
16384

debugl: client_request_x11: request from 127.0.0.1 35411

debugl: channel 1: new [x11]

debugl: confirm x11

debugl: channel 1: FORCE input drain

With the debugging information enabled with ssh -v, you can see that ssh has re-
ceived the X connection request and dutifully forwarded it to the X server. The for-
warding can be a little slow on a distant link, but the application should eventually
appear on your screen.

X SERVER CONFIGURATION

The X.Org server, Xorg, was once notorious for being difficult to configure for a
given hardware environment. However, a tremendous amount of effort has been
put into making Xorg ready to eat right out of the box, and many modern systems
run it successfully without any configuration file. However, it is still possible to
manually adapt the Xorg server to a wide array of graphics hardware, input devices,
video modes, resolutions, and color depths.

If your system is running fine without an Xorg configuration file, great! It may be
using the KMS module, which is described later in this chapter. Otherwise, you
have two options. Option one is to manually configure the xorg.conf file. The sec-
tions below describe manual configuration. Truth be told, this may be your only
real option in some situations. Option two is to use the xrandr tool to configure
your server; it’s covered starting on page 1426.

The Xorg configuration file is normally located in /etc/X11/xorg.conf, but the X
server searches a slew of directories to find it. The man page presents a complete
list, but one point to note is that some of the paths Xorg searches contain the host-
name and a global variable, making it easy for you to store configuration files for
multiple systems in a central location.

AIX operates without an xorg.conf configuration file and instead tries to automat-
ically recognize all AIX hardware display types. You can pass configuration hints
as arguments to the X server.

Several programs can help you configure X (e.g., xorgconfig), but it’s a good idea to
understand how the configuration file is structured in case you need to view or edit

X server configuration 1421

the configuration directly. You can gather some useful starting information directly
from the X server by running Xorg -probeonly and looking through the output
to identify your video chipset and any other probed values. You can also run Xorg

-configure to have the X server create an initial configuration file that is based on
the probed values. It's a good place to start if you have nothing else.

The xorg.conf file has several sections, each of which starts with the Section key-
word and ends with EndSection. Table 48.1 lists the most common section types.

Table 48.1 Sections of the xorg.conf file

Section Description

ServerFlags Lists general X server configuration parameters

Module Specifies dynamically loadable extensions for accelerated
graphics, font renderers, and the like

Device Configures the video card, driver, and hardware information

Monitor Describes physical monitor parameters, including timing and
display resolutions

Screen Associates a monitor with a video card (Device) and defines

the resolutions and color depths available in that configuration
InputDevice Specifies input devices such as keyboards and mice
ServerLayout Bundles input devices with a set of screens and positions the
screens relative to each other

It is often simplest to build a configuration file from the bottom up by first defining
sections for the input and output devices and then combining them into various
layouts. With this hierarchical approach, a single configuration file can be used for
many X servers, each with different hardware. It’s also a reasonable approach for a
single system that has multiple video cards and monitors.

Exhibit C shows how some of these sections fit together into the X.Org configu-
ration hierarchy. A physical display Monitor plus a video card Device combine to
form a Screen. A set of Screens plus InputDevices form a ServerLayout. Multiple
server layouts can be defined in a configuration file, though only one is active for
a given instance of the Xorg process.

1422 Chapter 48 The X Window System

Exhibit C Relationship of xorg.conf configuration sections

1
ez S e I v ey

" o Mouws r—
|Hnnrb:1r| D!'I'IEEI |Mur|rmr| Device | pe——

Graphics tablst

Some of the sections that make up the xorg.conf file are relatively fixed. The defaults

can often be used straight from an existing or example configuration file. Others,
such as the Device, Monitor, Screen, InputDevice, and ServerLayout sections, de-
pend on the host’s hardware setup. We discuss the most interesting of these sections

in more detail in the following subsections.

Device sections

A Device section describes a particular video card. You must provide a string to
identify the card and a driver appropriate for the device. The driver is loaded only
if the device is referenced by a corresponding Screen section. A typical device sec-
tion might look like this:

Section “Device”

Identifier "Videocard@"

Driver "radeon"

option value
EndSection

The manual page for the driver, radeon in this example, describes the hardware that’s
driven as well as the options the driver supports. If you are experiencing strange
video artifacts, you might try setting options to turn off hardware acceleration (if
supported), slowing down video memory access, or modifying interface parameters.
It is generally a good idea to check the web to see if other people have experienced
similar problems before you start randomly changing values.

Monitor sections

The Monitor section describes the displays attached to your computer. It can specify
detailed timing values. The timing information is necessary for older hardware, but
most modern monitors can be probed for it. Display specifications can usually be
obtained from the manufacturer’s web site, but nothing beats having the original
manual that came with the monitor. Either way, you will want to know at least the
horizontal sync and vertical refresh frequencies for your model.

X server configuration 1423

A typical Monitor section looks like this:

Section "Monitor"

Identifier "ViewSonic"

Option "DPMS™"

HorizSync 30-65

VertRefresh 50-120
EndSection

As with all of the sections, the Identifier line assigns a name by which you later
refer to this monitor. Here we have turned on DPMS (Display Power Management
Signaling) so that the X server can power down the monitor when we sneak away
for a donut and some coffee.

The HorizSync and VertRefresh lines, which apply only to CRT monitors, should
be filled in with values appropriate for your monitor. They may be specified as a
frequency range (as above) or as discrete values separated by commas. The driver
can theoretically probe for supported modes, but specifying the parameters keeps
the driver from attempting to use unsupported frequencies.

Screen sections

A Screen section ties a device (video card) to a monitor at a specific color depth
and set of display resolutions. Here’s an example that uses the video card and mon-
itor specified above.

Section "Screen"
Identifier "ScreenQ"
Device "Videocard®"
Monitor "ViewSonic"
DefaultDepth 24
Subsection "Display"
Depth 8
Modes "640x400"
EndSubsection
Subsection "Display"
Depth 16
Modes "640x400" "640x480" "B800x600" "1024x768"
EndSubsection
Subsection "Display"
Depth 24
Modes 1280x1024" "1024x768" "800x600" "640x400"
"640x480"
EndSubsection
EndSection

As you might expect, the screen is named with an Identifier, and the identifiers
for the previously defined video device and monitor are mentioned. This is the first
section we have introduced that has subsections. One subsection is defined for each
color depth, with the default being specified by the DefaultDepth field.

1424

Chapter48 The XWindow System

A given instance of the X server can run at only one color depth. At startup, the
server determines what resolutions are supported for that depth. The possible res-
olutions generally depend on the video card. Special keyboard combinations for X
on page 1427 describes how to cycle through the resolutions that are defined here.

Any modern video card should be able to drive your monitor at its full resolution in
24-bit or 32-bit color. If you want to run old programs that require a server running
in 8-bit color, run a second X server on a separate virtual console. Use the -depth
8 flag on the Xorg command line to override the DefaultDepth option.

InputDevice sections

An InputDevice section describes a source of input events such as a keyboard or
mouse. Each device gets its own InputDevice section, and as with other sections,
each is named with an Identifier field. If you are sharing a single configuration
file among machines with different hardware, you can define all the input devices;
only those referenced in the ServerLayout section are used. Here is a typical key-
board definition:

Section "InputDevice"

Identifier "Generic Keyboard"

Driver "Keyboard"

Option "AutoRepeat" "500 30"

Option "XkbModel" "pc104"

Option "XkbLayout™ "us"
EndSection

You can set options in the keyboard definition to express your particular religion’s
stance on the proper position of the Control and Caps Lock keys, among other
things. In this example, the AutoRepeat option specifies how long a key needs to
be held down before it starts repeating and how fast it repeats.

The mouse is configured in a separate InputDevice section:

Section "InputDevice"

Identifier "Generic Mouse"

Driver "mouse"

Option "CorePointer"

Option "Device" "/dev/input/mice"

Option "Protocol"™ "IMPS/2"

Option "Emulate3Buttons" "off"

Option "ZAxisMapping" "4 5"
EndSection

The CorePointer option designates this mouse as the system’s primary pointing de-
vice. The device file associated with the mouse is specified as an Option; Table 48.2
lists the mouse device multiplexer files for our example systems.

X server configuration 1425

Table 48.2 Common mouse device files
0s Device file

Linux /dev/input/mice

Solaris _ /dev/mouse

HP-UX /dev/deviceFileSystem/mouseMux
AlX /dev/mouse0

The communication protocol depends on the particular brand of mouse, its fea-
tures, and its interface. You can set it to auto to make the server try to figure out
the protocol for you. If your mouse wheel doesn’t work, try setting the protocol to
IMPS/2. If you have more than a few buttons, try using the ExplorerPS/2 protocol.
Some Solaris users report success with the VUID protocol.

The Emulate3Buttons option lets a two-button mouse emulate a three-button
mouse by defining a click on both buttons to stand in for a middle-button click.
The ZAxisMapping option is sometimes needed to support a scroll wheel or joystick
device. Most mice these days have at least three buttons, a scroll wheel, a built-in
MP3 player, a foot massager, and a beer chiller.!

ServerLayout sections

The ServerLayout section is the top-level node of the configuration hierarchy. Each
hardware configuration on which the server will be run should have its own in-
stance of the ServerLayout section. The layout used by a particular X server is usu-
ally specified on the server’s command line.

This section ties together all the other sections to represent an X display. It starts
with the requisite Identifier, which names this particular layout. It then associ-
ates a set of screens with the layout.? If multiple monitors are attached to separate
video cards, each screen is specified along with optional directions to indicate how
they are physically arranged. In this example, screen one is on the left and screen
two is on the right.

Here is an example of a complete ServerLayout section:

Section "ServerLayout"

Identifier "Simple Layout"

Screen "Screen 1" LeftOf "Screen 2"

Screen "Screen 2" RightOf "Screen 1"

InputDevice "Generic Mouse" "CorePointer"
InputDevice "Generic Keyboard" "CoreKeyboard"

Option "BlankTime" "me" # Blank

1. Not all options are supported by Xorg. Some options sold separately.

2. Recall that screens identify a monitor/video card combination at a particular color depth.

1426

Chapter48 The XWindow System

the screen in 10 minutes

Option "StandbyTime" "ee" # Turn off
screen in 20 minutes (DPMS)
Option "SuspendTime" "6o" # Full
hibernation in 60 minutes (DPMS)
Option "OffTime" 12" # Turn off
DPMS monitor in 2 hours
EndSection

Some video cards can drive multiple monitors at once. In this case, only a single
Screen is specified in the ServerLayout section. Following the screen list is the set
of input devices to associate with the layout. The CorePointer and CoreKeyboard
options are passed to the InputDevice section to indicate that the devices are to
be active for the configuration. Those options can also be set directly in the cor-
responding InputDevice sections, but it’s cleaner to set them in the ServerLayout.

The last few lines configure several layout-specific options. In the example above,
these all relate to DPMS, which is the interface that tells Energy Star-compliant
monitors when to power themselves down. The monitors must also have their
DPMS options enabled in the corresponding Monitor sections.

xrandr: not your father’s X server configurator

The X Resize and Rotate Extension (RandR) lets clients dynamically change the size,
orientation, and reflection of their X server screens. xrandr is the command-line
interface to this extension.

Of course, we would all love to spend a few days tediously crafting each line of the
xorg.conf file to support that brand-new SUPERINATOR 3000 system with its
four deluxe displays. But in many cases, you can have xrandr do the configuration
for you and be done in time to grab a few beers. Run with no arguments, xrandr
shows the available displays and their possible resolutions.

$ xrandr

VGA-0 connected 1024x768+0+0 (normal left inverted right x a...) Omm x
Omm
1024x768 61.0 60.0 59.9 59.9
800x600 60.3 61.0 59.9 56.2 59.8
640x480 59.9 61.0 59.4 59.5

DVI-0 connected 1024x768+0+0 (normal left inverted right x a...) Omm x
Omm

1024x768 60.0 60.0
800x600 60.3 59.9
640x480 59.9 59.4

You can specity the resolution to use for each display along with the display’s place-
ment relative to other displays.' For example:

. Before using xrandr for the first time, run Xorg -configure to reset the xorg.conf file to a known,

clean state.

48.4

X server troubleshooting and debugging 1427

$ xrandr --auto --output VGA-0 --mode 800x600 --right-of DVI-0

The --auto argument turns on all available monitors. The --output and --mode
arguments set the VGA display to a resolution of 800 [] 600, and the --right-of ar-
gument specifies that the VGA display is physically located to the right of the DVI
display. (The latter option is needed to properly implement desktop continuity.)
Run xrandr --help to see the many available options.

If you want xrandr to run automatically when you start the X server, you can put
it in your ~/.xprofile file, which is executed at server startup.

Kernel mode setting

To make the system’s presentation more seamless and flicker free, responsibility for
setting the initial mode of the graphics display is now being pushed into the Linux
kernel through the “kernel mode setting” (KMS) module. As of kernel version
2.6.30-10.12, KMS defaults to initializing the video card very early in the kernels
boot sequence.

You enable or disable KMS through settings in the video driver configuration files
in /etc/modprobe.d. For example, if you have an ATI Radeon video card, you can
turn off KMS by adding the following line to /etc/modprobe.d/radeon.conf:

options radeon modeset=0

The KMS module is still young and it does not currently support all video cards.
If you're lucky enough to have a supported card, your best bet is to rename the
xorg.conf file so that the X server tries to start without it and defaults to the KMS
configuration.

X SERVER TROUBLESHOOTING AND DEBUGGING

X server configuration has come a long way over the last decade, but it can still be
difficult to get things working just the way you would like. You may need to exper-
iment with monitor frequencies, driver options, proprietary drivers, or extensions
for 3D rendering. Ironically, it is the times when the display is not working cor-
rectly that you are most interested in seeing the debugging output on your screen.
Fortunately, the X.Org server gives you all the information you need (and a lot that
you don’t) to track down the problem.

Special keyboard combinations for X

Because the X server takes over your keyboard, display, mouse, and social life, you
can imagine that it might leave you with little recourse but to power the system
down if things are not working. However, there are a few things to try before it
comes to that.

1428

Chapter48 The XWindow System

If you hold down the Control and Alt keys and press a function key (F1-F6), the
X server takes you to one of the text-based virtual terminals. From there you can
log in and debug the problem. To get back to the X server running on, say, virtu-
al terminal 7, press <Alt-F7>.! If you are on a network, you can also try logging
in from another computer to kill the X server before resorting to the reset button.

m For virtual console support on Solaris, enable the svc:/system/vtdaemon:default

SMEF service and the console-login:vt[2-6] services.

If the monitor is not in sync with the card’s video signal, try changing the screen
resolution. The available resolutions are specified on a Modes line from the Screen
section of the configuration file. The exact Modes line that is active depends on the
color depth; see page 1423 for details. The X server defaults to the first resolution
shown on the active Modes line, but you can cycle through the different resolutions
by holding down Control and Alt and pressing the plus (+) or minus (-) key on
the numeric keypad.

Pressing <Control-Alt-Backspace> kills the X server immediately. If you ran the
server from a console, you will find yourself back there when the server exits. If a
display manager started the server, it usually respawns a new server and prompts
again for a login and password. You have to kill the display manager (xdm, gdm,
etc.) from a text console to stop it from respawning new X servers.

When X servers attack

Once you have regained control of the machine, you can begin to track down the
problem. The simplest place to start is the output of the X server. This output is oc-
casionally visible on virtual terminal 1 (<Control-Alt-F1>), which is where startup
program output goes. Most often, the X server output goes to a log file such as /var/
log/Xorg.0.log (/var/X11/Xserver/logs/Xf86.0.log on HP-UX).

As seen below, each line is preceded by a symbol that categorizes it. You can use
these symbols to spot errors (EE) and warnings (WW), as well as to determine how
the server found out each piece of information: through default settings (==), in
a config file (**), detected automatically (--), or specified on the X server com-
mand line (++).

Let’s examine the following snippet from an Ubuntu system:

X.0rg X Server 1.6.0

Release Date: 2009-2-25

X Protocol Version 11, Revision O

Build Operating System: Linux 2.6.24-23-server 1686 Ubuntu

Current Operating System: Linux nutrient 2.6.28-11-generic #42-Ubuntu
SMP Fri Apr 17 01:57:59 UTC 2009 1686

Build Date: 09 April 2009 02:10:02AM

xorg-server 2:1.6.0-0ubuntul14 (buildd@rothera.buildd)

1. The X server requires the <Control> key to be held down along with the <Alt-Fn> key combination
to switch virtual terminals, but the text console does not.

X server troubleshooting and debugging 1429

Before reporting problems, check http://wiki.x.org

to make sure that you have the latest version.

Markers: (--) probed, (**) from config file, (==) default setting,

(++4) from command line, (!!) notice, (II) informational,

(WW) warning, (EE) error, (NI) not implemented, (??) unknown.
(==) Log file: "/var/log/Xorg.0.log", Time: Sun May 10 22:11:47 2009
(==) Using config file: "/etc/X11/xorg.conf"

(==) ServerLayout "MainLayout"

(**) |-->Screen "Screen 0" (0)
(**) | |-->Monitor "Monitor Q"
(**) | |-->Device "Console"
(**) |-=>Input Device "MouseQ"

(**) |-->Input Device "Keyboard®"

The first lines tell you the version number of the X server and the X11 protocol ver-
sion it implements. Subsequent lines tell you that the server is using default values
for the log file location, the configuration file location, and the active server layout.
The display and input devices from the config file are echoed in schematic form.

One common problem that shows up in the logs is difficulty with certain screen
resolutions, usually evidenced by those resolutions not working or the X server
bailing out with an error such as “Unable to validate any modes; falling back to the
default mode? If you have not specified a list of frequencies for your monitor, the
X server probes for them by using Extended Display Identification Data (EDID).
If your monitor does not support EDID or if your monitor is turned off when X is
started, you need to put the frequency ranges for X to use in the Monitor section
of the configuration file.

Rounding error in the results obtained from an EDID probe can cause some reso-
lutions to be unavailable even though they should be supported by both your video
card and monitor. Log entries such as “No valid modes for 1280x1024; removing’
are evidence of this. The solution is to tell the X server to ignore EDID informa-
tion and use the frequencies you have specified; the following lines in the Device
section are what you need:

]

Option "IgnoreEDID" "true"
Option "UseEdidFregs" "false"

As another example, suppose you forgot to define the mouse section properly. The
error would show up like this in the output:

(==) Using config file: "/etc/X11/xorg.conf"

Data incomplete in file /etc/X11/xorg.conf
Undefined InputDevice "MouseQ" referenced by ServerlLayout
"MainLayout".

(EE) Problem parsing the config file

(EE) Error parsing the config file

Fatal server error:

no screens found

1430

48.5

Chapter48 The XWindow System

Once X is up and running and you have logged in, you can run the xdpyinfo com-
mand to get more information about the X server’s configuration.' xdpyinfo’s out-
put again tells you the name of the display and the X server version information.
It also tells you the color depths that are available, the extensions that have been
loaded, and the screens that have been defined, along with their dimensions and
color configurations.

xdpyinfo’s output can be parsed by a script (such as your ~/.xsession file) to deter-
mine the size of the active screen and to set up the desktop parameters appropri-
ately. For debugging, xdpyinfo is most useful for determining that the X server is
up and listening to network queries, that it has configured the correct screen and
resolution, and that it is operating at the desired color bit depth. If this step works,
you are ready to start running X applications.

A BRIEF NOTE ON DESKTOP ENVIRONMENTS

The flexibility of the X Window System client/server model has, over the years, led
to an explosion of widget sets, window managers, file browsers, tool bar utilities,
and utility programs. The first comprehensive environments, OpenLook and Mo-
tif, were elegant for their time but proprietary. Licensing fees for the development
libraries and window manager made them inaccessible to the general public.

As applications became more advanced and demanded progressively more support
from the underlying window system, it became clear that a comprehensive ap-
proach to advancing the platform was required. From this need were born the two
big players in modern desktop environments: GNOME and KDE. Although some
users have strong feelings regarding which is the One True Way, both are relative-
ly complete desktop managers. In fact, just because you are running in one realm
does not mean you cannot use applications from the other; just expect a different
look and feel and a brief sense of discontinuity in the universe.

The freedesktop.org project is dedicated to creating an environment that will allow
applications to be compatible with any desktop environment.

KDE

KDE, which stands for the K Desktop Environment, is written in C++ and built on
the Qt tool kit library. It is often preferred by users who enjoy eye candy, such as
transparent windows, shadows, and animated cursors. It looks nice, but it can be slow
on anything but a high-end workstation. For users who spend a lot of time clicking
around in the desktop rather than running applications, the tradeoft between effi-
ciency and aesthetics may ultimately decide whether KDE is the appropriate choice.

. We don’t recommend logging into X as root because this operation may create a bunch of default

start-up files in root’s home directory, which is usually / or /root. It’s also notably insecure. Instead,
log in as a regular user and use sudo. Ubuntu enforces this discipline by default.

A brief note on desktop environments 1431

KDE is often preferred by people transitioning from a Windows or Mac environ-
ment because of its pretty graphics. It’s also a favorite of technophiles who love to
be able to fully customize their environment. For others, KDE is simply too much
to deal with and GNOME is the simpler choice.

Applications written for KDE almost always contain a K somewhere in the name,
for example, Konqueror (the web/file browser), Konsole (the terminal emulator),
or KWord (a word processor). The default window manager, KWin, supports the
freedesktop.org Window Manager Specification standard, configurable skins for
changing the overall look and feel, and many other features. The KOffice applica-
tion suite contains word processing, spreadsheet, and presentation utilities. KDE
sports a comprehensive set of development tools, including an integrated develop-
ment environment (IDE).

GNOME

GNOME is written in C and is based on the GTK+ widget set. The name GNOME
was originally an acronym for GNU Network Object Model Environment, but that
derivation no longer really applies; these days, GNOME is just a name.

With the recent addition of support for Compiz (compiz.org), GNOME has acquired
many of the eye candy features that it previously lacked. Overall, GNOME is still
less glitzy than KDE, is not as configurable, and is slightly less consistent. However,
it is noticeably cleaner, faster, simpler, and more elegant. Most Linux distributions
use GNOME as the default desktop environment.

Like KDE, GNOME has a rich application set. GNOME applications are usual-
ly identifiable by the presence of a G in their names. One of the exceptions is the
standard GNOME window manager, called Metacity (pronounced like “opacity”),
which supplies basic windowing functions and skinning of the GNOME UL Fol-
lowing the GNOME model, Metacity is designed to be lean and mean.

If you want some of the extra features you may be used to, such as smart window
placement, you need the support of external applications such as brightside or
devilspie. Unfortunately, bling is one area in which KDE still has a leg up.

Office applications include AbiWord for word processing, Gnumeric as a spread-
sheet, and one of the more impressive projects to come out of GNOME, The GIMP
for image processing. A file manager called Nautilus is also included. Like KDE,
GNOME provides an extensive infrastructure for application developers. Altogether,
GNOME offers a powerful architecture for application development in an easy-to-
use desktop environment.

Which is better, GNOME or KDE?

Ask this question on any public forum and you will see the definition of “flame war”
Because of the tendency for people to turn desktop preference into a personal cru-
sade, the following paragraphs may be some of the least opinionated in this book.

1432

48.6

Chapter48 The XWindow System

The best answer is to try both desktops and decide for yourself which best meets
your needs. Keep in mind that your friends, your users, and your manager may all
have different preferences for a desktop environment, and that is OK.

Remember that your choice of desktop environment does not dictate which appli-
cations you can run. No matter which desktop you choose, you can select appli-
cations from the full complement of excellent software made available by both of
these (and other) open source projects.

RECOMMENDED READING

The X.Org home page, x.org, includes information on upcoming releases as well as
links to the X.Org wiki, mailing lists, and downloads.

The man pages for Xserver and Xorg (or just X on AIX) cover generic X server
options and Xorg-specific command-line options. They also include a general
overview of X server operation.

The xorg.conf man page covers the config file and describes its various sections
in detail. This man page also lists video card drivers in its REFERENCES section.
Look up your video card here to learn the name of the driver, then read the driver’s
own man page to learn about driver-specific options.

