
			 1443

An operating system with over 40 years of history is sure to be dragging some cruft
along with it. Some would put support for serial devices into this category, arguing
that it’s a technology from a bygone era that is best forgotten. Compared to today’s
multi-megabit serial interfaces such as USB, traditional serial ports may indeed
seem too slow and twiddly to be useful.

In fact, an understanding of serial interfaces is an essential component of any system
administrator’s tool box. For better or worse, the UNIX command-line interface
is based on the ancient concept of a serial terminal and the associated commands
and control structures remain in use today. Even if you have never been within 50
paces of a hardwired terminal, you’re still using the same basic OS facilities that
supported it. For example, the console window on your UNIX or Linux desktop
is really a pseudo-terminal, as is the device to which you appear to be connected
when you log in through the network.

Actual RS-232C serial ports are still around, too. They’re no longer the general fa-
cility they used to be, but they remain important in several situations. They’re the
common denominator for bootstrapping all types of hardware devices, from lights-
out enterprise-class server managers to embedded systems the size of a thumbnail,
including custom hardware projects. They’re a medium you can use to communicate

50 Serial Devices and Terminals

1444	 Chapter 50	 Serial Devices and Terminals	

with legacy systems. There are even cases in which you might run into an actual
hardwired terminal, such as on a manufacturing floor.

This chapter describes how to connect and use RS-232-based serial devices in the
modern world. The first few sections address serial hardware and cabling consider-
ations. Then, starting on page 1452, we talk about the software infrastructure that
supports both hardwired terminals and the pseudo-terminals that emulate them.
Finally, we cover the use of a UNIX or Linux system to communicate with the se-
rial consoles of other devices.

50.1	 The RS-232C standard
Most slow-speed serial ports conform to some variant of the RS-232C standard.
This standard specifies the electrical characteristics and meaning of each signal wire,
as well as the pin assignments on the traditional 25-pin (DB-25p) serial connector
shown in Exhibit A.

Exhibit A	 A male DB-25 connector

Full RS-232C1 is never used in real-world situations since it defines numerous
signals that are unnecessary for basic communication. DB-25 connectors are also
inconveniently large. As a result, 9-pin DB-9 connectors are now commonly used
instead of the original 25-pin flavor. In cases where structured cabling is used, RJ-45
connectors are also a convenient alternative. Both of these connectors are described
in the section titled Alternative connectors starting on page 1446.

Exhibit A shows a male DB-25. As with all serial connectors, the pin numbers on a
female connector are a mirror image of those on a male connector so that like-num-
bered pins mate. The diagram is drawn from the orientation shown, as if you were
facing the end of the cable, about to plug the connector into your forehead.

Note that in Exhibit A, only seven pins are actually installed, which is typical. The
RS-232 signals and their pin assignments on a full-size DB-25 connector are shown

1.	 To be technically correct, this standard should now be referred to as EIA-232-E. However, no one will
have the slightest idea what you are talking about.

	 The RS-232C standard	 1445

in Table 50.1. Only the shaded signals are ever used in practice (at least on computer
systems); all others can be ignored.

Table 50.1	 RS-232 signals and pin assignments on a DB-25

Pin Name Function Pin Name Function

1 FG Frame ground 14 STD Secondary TD
2 TD Transmitted data 15 TC Transmit clock
3 RD Received data 16 SRD Secondary RD
4 RTS Request to send 17 RC Receive clock
5 CTS Clear to send 18 – Not assigned
6 DSR Data set ready 19 SRTS Secondary RTS
7 SG Signal ground 20 DTR Data terminal ready
8 DCD Data carrier detect 21 SQ Signal quality detector
9 – Positive voltage 22 RI Ring indicator

10 – Negative voltage 23 DRS Data rate selector
11 – Not assigned 24 SCTE Clock transmit external
12 SDCD Secondary DCD 25 BUSY Busy
13 SCTS Secondary CTS

Unlike connector standards such as USB and Ethernet that were designed to be
mostly idiot-proof, RS-232 requires you to know what types of devices you are con-
necting. Two interface configurations exist: DTE (Data Terminal Equipment) and
DCE (Data Communications Equipment). DTE and DCE share the same pinouts,
but they specify different interpretations of the RS-232 signals.

Every device is configured as either DTE or DCE; a few devices support both, but
not simultaneously. Computers, terminals, and printers are generally DTE, and most
modems are DCE. DTE and DCE serial ports can communicate with each other in
any combination, but different combinations require different cabling.

There is no sensible reason for both DTE and DCE to exist; all equipment could
use the same wiring scheme. The existence of two conventions is merely one of the
many pointless historical legacies of RS-232.

DTE and DCE can be confusing if you let yourself think about the implications too
much. When that happens, just take a deep breath and reread these points:

•	 The RS-232 pinout for a given connector type is always the same, regard-
less of whether the connector is male or female (matching pin numbers
always mate) and regardless of whether the connector is on a cable, a DTE
device, or a DCE device.

•	 All RS-232 terminology is based on the model of a straight-through con-
nection from a DTE device to a DCE device. By “straight through,” we

1446	 Chapter 50	 Serial Devices and Terminals	

mean that TD on the DTE end is connected to TD on the DCE end, and
so on. Each pin connects to the same-numbered pin on the other end.

•	 Signals are named relative to the perspective of the DTE device. For exam-
ple, the name TD (transmitted data) really means “data transmitted from
DTE to DCE.” Despite the name, the TD pin is an input on a DCE device.
Similarly, RD is an input for DTE and an output for DCE.

•	 When you wire DTE equipment to DTE equipment (computer-to-terminal
or computer-to-computer), you must trick each device into thinking the
other is DCE. For example, both DTE devices expect to transmit on TD
and receive on RD. You must cross-connect the wires so that one device’s
transmit pin goes to the other’s receive pin, and vice versa.

•	 Three sets of signals must be crossed in this fashion for DTE-to-DTE
communication (if you choose to connect them at all). TD and RD must
be crossed. RTS and CTS must be crossed. And each side’s DTR pin must
be connected to both the DCD and DSR pins of the peer.

•	 To add to the confusion, a cable crossed for DTE-to-DTE communication
is often called a “null modem” cable. You might be tempted to use a null
modem cable to hook up a modem, but since modems are DCE, that won’t
work! A cable for a modem is called a “modem cable” or a “straight cable.”

Exhibit B shows pin assignments and connections for both null-modem and straight-
through cables. Only signals used in the real world are shown.

Exhibit B	 Pin assignments and connections for DB-25 cables

50.2	 Alternative connectors
The following sections describe the most common modern connector systems, DB-9
and RJ-45. Despite their physical differences, these connectors provide access to

	 Alternative connectors	 1447

the same electrical signals as a DB-25. Devices that use different connectors are
always compatible if the right kind of converter cable is used.

The DB-9 variant
The DB-9 is the most common modern-day embodiment of RS-232. It’s a 9-pin
connector that looks like a “DB‑25 junior” and supplies the eight most commonly
used signals. Pin 9 is left unconnected.

Table 50.2	 DB-9 Pinout

DB-9 Signal Function

1 DCD Data carrier detect
2 RD Received data
3 TD Transmitted data
4 DTR Data terminal ready
5 SG Signal ground
6 DSR Data set ready
7 RTS Request to send
8 CTS Clear to send

Exhibit C	 A male DB-9 connector

The RJ-45 variant
An RJ-45 is an 8-wire modular telephone connector. The use of RJ-45s makes it easy
to run serial communications through your building’s existing wiring if the wiring
plant was installed with twisted-pair Ethernet in mind.

RJ-45 jacks for serial connections are usually not found on computers or on gar-
den-variety serial equipment, but they are often used as intermediate connectors for
routing serial lines through patch panels. RJ-45s are compact, self-securing, cheap,

1448	 Chapter 50	 Serial Devices and Terminals	

and easy to crimp onto the ends of custom-cut cables. An inexpensive crimping
tool is required.

Several systems map the pins on an RJ-45 connector to those on a DB-25. Table
50.3 shows the official RS-232D standard, which is used only haphazardly.

Table 50.3	 Pins for an RJ-45 to DB-25 straight cable

RJ-45 DB-25 Signal Function

1 6 DSR Data set ready
2 8 DCD Data carrier detect
3 20 DTR Data terminal ready
4 7 SG Signal ground
5 3 RD Received data
6 2 TD Transmitted data
7 5 CTS Clear to send
8 4 RTS Request to send

Exhibit D	 A male RJ-45 connector

A well-thought-out standard for RJ-45 to DB-25 wiring was created by Dave Yost.
If you’re planning to use a significant amount of serial cabling, be sure to check it
out at yost.com/computers/RJ45-serial.

50.3	 Hard and soft carrier
UNIX expects to see the DCD signal, carrier detect, go high (positive voltage) when
a serial device is attached and turned on. If your serial cable has a DCD line and
your computer really pays attention to it, you are using what is known as hard car-
rier. Most systems also allow soft carrier; that is, the computer pretends that DCD
is always asserted.

	 Hardware flow control	 1449

For certain devices (such as traditional hardwired terminals), soft carrier is a great
blessing. You can get away with using only three wires for each serial connection:
transmit, receive, and signal ground. However, modem connections really need the
DCD signal. If a terminal is connected through a modem and the carrier signal is
lost, the modem should hang up (especially on a long distance call!).

You can specify soft carrier for a serial port in the configuration file for whatever
client software you use in conjunction with the port (e.g., gettydefs or inittab for
a login terminal or printcap for a printer). You can also use stty -clocal to enable
soft carrier on the fly.

For example,

suse$ sudo stty -clocal < /dev/ttyS1

enables soft carrier for the port ttyS1.

50.4	 Hardware flow control
The CTS and RTS signals make sure that a device does not send data faster than
the receiver can process it. For example, if a modem is in danger of running out of
buffer space (perhaps because the connection to the remote site is slower than the
serial link between the local machine and the modem), it can tell the computer to
shut up until more room becomes available in the buffer.

Flow control is essential for high-speed modems and is also very useful for serial
printers. On systems that do not support hardware flow control (either because the
serial ports do not understand it or because the serial cable leaves CTS and RTS
disconnected), flow control can sometimes be simulated in software with the AS-
CII characters XON and XOFF. However, software flow control must be explicitly
supported by high-level software, and even then it does not work very well.

XON and XOFF are <Control-Q> and <Control-S>, respectively. This is a prob-
lem for emacs users because <Control-S> is the default key binding for the emacs
search command. To fix the problem, bind the search command to another key or
use stty start and stty stop to change the terminal driver’s idea of XON and XOFF.

Most terminals ignore the CTS and RTS signals. By jumpering pins 4 and 5 to-
gether at the terminal end of the cable, you can fool the few terminals that require
a handshake across these pins before they will communicate. When the terminal
sends out a signal on pin 4 saying “I’m ready,” it gets the same signal back on pin 5
saying “Go ahead.” You can also jumper the DTR/DSR/DCD handshake like this.

As with soft carrier, hardware flow control can be set through configuration files
or with the stty command.

On Sun hardware, flow control for built-in serial ports must be set up with the ee-
prom command.

1450	 Chapter 50	 Serial Devices and Terminals	

On some HP platforms, you may need to set flow control for built-in serial ports
with the Guardian Service Processor (GSP).

50.5	 Serial device files
Serial ports are represented by device files in or under /dev. Even today, many com-
puters have one or two serial ports built in, mainly as a communication mechanism
of last resort. In the past, such ports were usually known by names such as /dev/
ttya and /dev/ttyb, but naming conventions have diverged over time, and those
ports are now often named /dev/ttyS0 or/dev/tty1.

Sometimes, more than one device file refers to the same serial port. For example, /
dev/cua/a on a Solaris system refers to the same port as /dev/term/a. However, the
minor device number for /dev/cua/a is different:

solaris$ ls -lL /dev/term/a /dev/cua/a
crw  -  -  -  -  -  -  -	 1	 uucp	 uucp	 37, 131072	 Jan 11

16:35 /dev/cua/a
crw- rw- rw-	 1	 root	 sys	 37, 0	 Jan 11 16:35 /dev/

term/a

As always, the names of the device files do not really matter. Device mapping is
determined by the major and minor device numbers, and the names of device files
are merely a convenience for human users.

Multiple device files are primarily used to support modems that handle both in-
coming and outgoing calls. In the Solaris scheme, the driver allows /dev/term/a to
be opened only when DCD has been asserted by the modem, indicating the pres-
ence of an active (inbound) connection (assuming that soft carrier is not enabled
on the port). /dev/cua/a can be opened regardless of the state of DCD; it’s used
when connecting to the modem to instruct it to place a call. Access to each device
file is blocked while the other is in use.

On HP-UX, serial device files are not always created automatically. You can use the
ioscan command to force the system to look for them, something like

hp-ux$ sudo ioscan -C tty -fn

You can then create the device files with

hp-ux$ sudo mksf -H port-from-ioscan-output -d asio0 -a0 -i -v

AIX appears to be moving away from supporting serial interfaces entirely. In partic-
ular, if you have a system with multiple LPARs (see Chapter XXX), serial interfaces
are not available by default. You may have to purchase special hardware to obtain
serial connectivity in this case.

	 setserial: set serial port parameters under Linux	 1451

50.6	 setserial: set serial port parameters under Linux
The serial ports on a PC can appear at several different I/O port addresses and
interrupt levels (IRQs). These settings might be configured through the system’s
BIOS, or they might be set automatically through plug and play (PnP) code at boot
time. On rare occasions, you may need to change a serial port’s address and IRQ
settings to accommodate some cranky piece of hardware that is finicky about its
own settings and only works correctly when it has co-opted the settings normally
used by a serial port. Unfortunately, the serial driver may not be able to detect such
configuration changes without your help.

The traditional UNIX response to such diversity is to allow the serial port param-
eters to be specified when the kernel is compiled. Fortunately, Linux lets you skip
this tedious step and change the parameters on the fly with the setserial command.
setserial -g shows the current settings.

ubuntu$ setserial -g /dev/ttyS0
/dev/ttyS0, UART: 16550A, Port: 0x03f8, IRQ: 4

To set the parameters, you specify the device file and then a series of parameters
and values. For example, the command

ubuntu$ sudo setserial /dev/ttyS1 port 0x02f8 irq 3

sets the I/O port address and IRQ for ttyS1. It’s important to keep in mind that
this command does not change the hardware configuration in any way; it simply
informs the Linux serial driver of the configuration. To change the actual settings
of the hardware, consult your system’s BIOS.

setserial changes only the current configuration, and the settings do not persist
across reboots. Unfortunately, there isn’t a standard way to make the changes per-
manent; each of our example distributions does it differently.

The /etc/init.d/setserial script on Ubuntu systems is used for serial port initial-
ization. It reads parameters for each port from /var/lib/setserial/autoserial.conf.

SUSE’s /etc/init.d/serial script handles serial port initialization. Unfortunately, this
script has no configuration file; you must edit it directly to reflect the commands
you want to run. Bad SUSE! The script uses its own little metalanguage to construct
the setserial command lines, but fortunately there are plenty of commented-out
example lines to choose from.

Red Hat’s /etc/rc.d/rc.sysinit script checks for the existence of /etc/rc.serial and
executes it at startup time if it exists. No example file is provided, so you must create
the file yourself if you want to make use of this feature. Just list the setserial com-
mands you want to run, one per line. For completeness, it’s probably a good idea
to make the file executable and to put #!/bin/sh on the first line; however, these
touches d’élégance aren’t strictly required.

1452	 Chapter 50	 Serial Devices and Terminals	

50.7	 Pseudo-terminals
Hardwired CRT terminals may be nothing more than museum fodder these days,
but their spirit lives on in the form of pseudo-terminals. These pairs of device files
emulate a text terminal interface on behalf of services such as virtual consoles, vir-
tual terminals (e.g., xterm), and network login services like telnet and ssh.

Here’s how it works. Each of the of the paired device files accesses the same device
driver inside the kernel. The slave device is named something like /dev/ttyp1. A
process that would normally interact with a physical terminal, such as a shell, uses
the slave device in place of a physical device such as /dev/ttyS0. A host process
such as sshd or telnetd opens the corresponding master device—in this example,
/dev/ptyp1. The pseudo-terminal device driver shuttles keystrokes and text output
between the two devices, hiding the fact that no physical terminal exists.

Although pseudo-terminals don’t need a baud rate or flow control strategy, most
of the other terminal attributes and settings covered in this chapter apply to them.

The expect scripting language uses a pseudo-terminal to control a process (such
as ftp or parted) that expects to interact with a human user. It is quite useful for
automating certain types of sysadmin tasks.

50.8	 Configuration of terminals
Cheap computers have replaced ASCII terminals. However, even the “terminal”
windows on a graphical display (such as xterm) use the same drivers and configu-
ration files as real terminals, so system administrators still benefit by understanding
how this archaic technology works.

Terminal configuration involves two main tasks: making sure that a process is at-
tached to a terminal to accept logins, and making sure that information about the
terminal is available once a user has logged in. Before we dive into the details of
these tasks, however, let’s look at the entire login process.

The login process
The login process involves several different programs, the most important of which
is the init daemon. One of init’s jobs is to spawn a process, known generically as
a getty (but not on Solaris, which calls it a ttymon), on each terminal port that is
turned on in the /etc/ttys or /etc/inittab file. The getty sets the port’s initial char-
acteristics (such as speed and parity) and prints a login prompt.

The actual name of the getty program varies among Linux distributions, and some
distributions include multiple implementations. Red Hat and SUSE use a simplified
version called mingetty to handle logins on virtual consoles. To manage terminals
and dial-in modems, they provide Gert Doering’s mgetty implementation. Ubun-
tu uses a single getty written by Wietse Venema et al.; this version is also available
on SUSE systems under the name agetty. An older implementation called uugetty

See page XXX for more
information about
the init daemon.

	 Configuration of terminals	 1453

has largely been superseded by mgetty. Finally, HylaFAX (hylafax.org), a popular
open source fax server, has its own version of getty called faxgetty.

To distinguish among this plenitude of gettys, think of them in order of complexity.
mingetty is the simplest and is essentially just a placeholder for a getty. It can only
handle logins on Linux virtual consoles. agetty is a bit more well-rounded and han-
dles both serial ports and modems. mgetty is the current king of the hill. It handles
incoming faxes as well as logins and does proper locking and coordination so that
the same modem can be used as both a dial-in and a dial-out line.

The sequence of events in a complete login is as follows:

•	 getty prints a login prompt (along with the contents of the /etc/issue file
on Linux systems).

•	 A user enters a login name at getty’s prompt.
•	 getty runs the login program with the specified name as an argument.
•	 login requests a password and validates the account against /etc/shadow

or an administrative database system such as NIS or LDAP.
•	 login prints the message of the day from /etc/motd and runs a shell.
•	 The shell executes the appropriate startup files.1

•	 The shell prints a prompt and waits for input.

When the user logs out, control returns to init, which wakes up and spawns a new
getty on the terminal port.

Files in /etc control the characteristics associated with each terminal port. These
characteristics include the presence of a login prompt and getty process on the
port, the baud rate to expect, and the type of terminal that is assumed to be con-
nected to the port.

Unfortunately, terminal configuration is one area where there is little agreement
among vendors. Table 50.4 lists the files used by each system.

Table 50.4	 Terminal configuration files

System On/off Terminal type Parameters Monitor

Ubuntu a /etc/event.d/tty b /etc/ttytype /etc/gettydefs getty
SUSE /etc/inittab /etc/ttytype /etc/gettydefs getty
Red Hat /etc/inittab /etc/ttytype /etc/gettydefs getty
Solaris  c _sactab _sactab zsmon/_pmtab ttymon
HP-UX /etc/inittab /etc/ttytype /etc/gettydefs getty
AIX d /etc/inittab /etc/security/login.cfg ODM database getty

a.	 Ubuntu has moved from init to upstart for TTY/getty management; see page 1456.
b.	Virtual consoles are defined in /etc/default/console-setup.
c.	 Solaris configuration files are in /etc/saf and should be managed with sacadm.
d.	To ensure consistency, use SMIT to modify TTY parameters on AIX.

1.	 .profile for sh and ksh; .bash_profile and .bashrc for bash; .cshrc and .login for csh/tcsh.

1454	 Chapter 50	 Serial Devices and Terminals	

The /etc/ttytype file
On many systems, terminal type information is kept in a file called /etc/ttytype.
The format of an entry in ttytype is

termtype device

where device is the short name of the device file representing the port and the ter-
mtype names an entry in the termcap or terminfo database. When you log in, the
TERM environment variable is set to the value of this field.

Here is a sample ttytype file:

wyse	console
dialup	 ttyi0
dialup	 ttyi1
vt320	 ttyi2
h19	ttyi3
dialout	 ttyi4

The /etc/gettytab file
The gettytab file associates symbolic names such as std.9600 with port config-
uration profiles that include parameters such as speed, parity, and login prompt.
Here is a sample:

The default entry, used to set defaults for other entries, and in cases
where getty is called with no specific entry name.

default:\
	 :ap:lm=\r\n%h login\72 :sp#9600:

Fixed-speed entries

2|std.9600|9600-baud:\
	 :sp#9600:
h|std.38400|38400-baud:\
	 :sp#38400:

The format is the same as that of printcap or termcap. The lines with names sepa-
rated by a vertical bar (|) list the names by which each configuration is known. The
other fields in an entry set the options to be used with the serial port.

The /etc/gettydefs file
Like gettytab, gettydefs defines port configurations used by getty. A given system
will usually have one or the other, never both. The gettydefs file looks like this:

console# B9600 HUPCL # B9600 SANE IXANY #login: #console
19200# B19200 HUPCL # B19200 SANE IXANY #login: #9600
9600# B9600 HUPCL # B9600 SANE IXANY HUPCL #login: #4800
4800# B4800 HUPCL # B4800 SANE IXANY HUPCL #login: #2400
2400# B2400 HUPCL # B2400 SANE IXANY HUPCL #login: #1200

	 Configuration of terminals	 1455

1200# B1200 HUPCL # B1200 SANE IXANY HUPCL #login: #300
300# B300 HUPCL # B300 SANE IXANY TAB3 HUPCL #login: #9600

The format of an entry is

label# initflags # finalflags # prompt #next

getty tries to match its second argument with a label entry. If it is called without a
second argument, the first entry in the file is used. The initflags field lists ioctl(2)
flags that should be set on a port until login is executed. The finalflags field sets
flags that should be used thereafter.

There must be an entry that sets the speed of the connection in both the initflags
and the finalflags. The flags that are available vary by system; check the gettydefs
or mgettydefs man page for authoritative information.

The prompt field defines the login prompt, which may include tabs and newlines
in backslash notation. The next field gives the label of an inittab entry that should
be substituted for the current one if a break is received. This was useful decades
ago when modems didn’t negotiate a speed automatically and you had to match
speeds by hand with a series of breaks. Today, it’s an anachronism. For a hardwired
terminal, next should refer to the label of the current entry.

Each time you change the gettydefs file, you should run getty -c gettydefs, which
checks the syntax of the file to make sure that all entries are valid.

The /etc/inittab file
init supports various “run levels” that determine which system resources are enabled.
There are seven run levels, numbered 0 to 6, with “s” recognized as a synonym for
level 1 (single-user operation). When you leave single-user mode, init prompts you
to enter a run level unless an initdefault field exists in /etc/inittab as described
below. init then scans the inittab file for all lines that match the specified run level.

Run levels are usually set up so that you have one level in which only the console is
enabled and another level in which all gettys are enabled. You can define the run
levels in whatever way is appropriate for your system; however, we recommend that
you not stray too far from the defaults.

Entries in inittab are of the form

id:run-levels:action:process

Here are some simple examples of inittab entries:

Trap CTRL-ALT-DELETE
ca::ctrlaltdel:/sbin/shutdown -t3 -r now

Run gettys in standard runlevels
1:2345:respawn:/sbin/mingetty tty1
2:2345:respawn:/sbin/mingetty tty2

See page XXX for
more information
about the role of init.

1456	 Chapter 50	 Serial Devices and Terminals	

In this format, id is a one- or two-character string that identifies the entry; it can
be null. For terminal entries, it is customary to use the terminal number as the id.

run-levels enumerates the run levels to which the entry pertains. If no levels are
specified (as in the first line), then the entry is valid for all run levels. action tells
how to handle the process field; Table 50.5 lists some of the commonly used values.

Table 50.5	 Common values for the /etc/inittab action field

Value Wait? Meaning

– Sets the initial run level
boot No Runs when inittab is read for the first time
bootwait Yes Runs when inittab is read for the first time
ctrlaltdel No Runs in response to a keyboard <Control-Alt-Delete> a

once No Starts the process once
wait Yes Starts the process once
respawn No Always keeps the process running
powerfail No Runs when init receives a power-fail signal
powerwait Yes Runs when init receives a power-fail signal
sysinit Yes Runs before accessing the console
off – Terminates the process if it is running, on some systems

a.	 Linux systems only

If one of the run-levels matches the current run level and the action field indicates
that the entry is relevant, init uses sh to execute (or terminate) the command spec-
ified in the process field. The Wait? column in Table 50.5 tells whether init waits for
the command to complete before continuing.

In the example inittab lines above, the last two lines spawn mingetty processes on
the first two virtual consoles (accessed with <Alt-F1> and <Alt-F2>). If you add
hardwired terminals or dial-in modems, the appropriate inittab lines look similar to
these. However, you must use mgetty or getty (agetty on SUSE) with such devices
because mingetty is not sophisticated enough to handle them correctly. In general,
respawn is the correct action and 2345 is an appropriate set of levels.

The command telinit -q makes init reread the inittab file.

getty configuration for Linux
Different gettys require different configuration procedures. The getty/agetty ver-
sion found on SUSE and Ubuntu is generally a bit cleaner than the mgetty version
because it accepts all of its configuration information on the command line (in /
etc/inittab).

The general model is

	 Configuration of terminals	 1457

/sbin/getty port speed termtype

where port is the device file of the serial port relative to /dev, speed is the baud rate
(e.g., 38400), and termtype identifies the default terminal type for the port. The
termtype refers to an entry in the terminfo database. Most emulators simulate a
DEC VT100, denoted vt100. Most of the many other minor options relate to the
handling of dial-in modems.

mgetty is a bit more sophisticated than agetty in its handling of modems and inte-
grates both incoming and outgoing fax capability. Unfortunately, its configuration
is a bit more diffuse. In addition to other command-line flags, mgetty can accept an
optional reference to an entry in /etc/gettydefs that specifies configuration details
for the serial driver. Unless you’re setting up a sophisticated modem configuration,
you can usually get away without a gettydefs entry.

Use man mgettydefs to find the man page for the gettydefs file. It’s named this
way to avoid conflict with an older gettydefs man page that no longer exists on
any Linux system.

A simple mgetty command line for a hardwired terminal looks like this:

/sbin/mgetty -rs speed device

speed is the baud rate (e.g., 38400), and device is the device file for the serial port
(use the full pathname).

If you want to specify a default terminal type for a port when using mgetty, you
must specify it in a separate file, /etc/ttytype, and not on the mgetty command line.
The format of an entry in ttytype is described on page 1454.

Ubuntu Upstart
Ubuntu has replaced its init with a rearchitected version called Upstart that starts
and stops services in response to events. The executable file for Upstart is still known
as /sbin/init, however.

Upstart uses one file for each active terminal in /etc/event.d. For example, if we
wanted a getty to run on ttyS0, /etc/event.d/ttyS0 might look like this:

ttyS0 – getty

This service maintains a getty on ttyS0 from the point when
the system is started until it is shut down again.

start on runlevel 2
start on runlevel 3
start on runlevel 4
start on runlevel 5

stop on runlevel 0
stop on runlevel 1
stop on runlevel 6 respawn

1458	 Chapter 50	 Serial Devices and Terminals	

exec /sbin/getty 38400 ttyS0

See page XXX for some additional comments on Upstart.

Solaris and sacadm
Rather than traditional UNIX gettys that watch each port for activity and provide a
login prompt, Solaris has a convoluted hierarchy called the Service Access Facility
that controls TTY monitors, port monitors, and many other things that provide a
lot of complexity but little added functionality.

To set up a serial port to provide a login prompt, you must first configure a “mon-
itor” that watches the status of the port (ttymon). You then configure a port mon-
itor that watches the TTY monitor. For example, to set up a 9,600 baud monitor
on ttyb to print a login prompt with terminal type VT100, you would use the fol-
lowing commands.

solaris$ sudo sacadm -a -p myttymon -t ttymon -c /usr/lib/saf/ttymon -v 1
solaris$ sudo pmadm -a -p myttymon -s b -i root -fu -v 1 -m "`ttyadm -d /

dev/term/b -l 9600 -T vt100 -s /usr/bin/login`"

The /etc/ttydefs file is used much like gettydefs on other systems to set speed and
parity parameters.

See the manual pages for saf, sacadm, pmadm, ttyadm, and ttymon as well as the
terminals chapter in the Solaris AnswerBook for more information about setting
up these monitors. Have fun.

50.9	 Special characters and the terminal driver
The terminal driver supports several special functions that you access by typing
particular keys (usually control keys) on the keyboard. The exact binding of func-
tions to keys can be set with the tset and stty commands. Table 50.6 lists some of
these functions, along with their default key bindings.

	 stty: set terminal options	 1459

Table 50.6	 Special characters for the terminal driver

Name Default Function

erase <Control-?> Erases one character of input
werase <Control-W> Erases one word of input
kill <Control-U> Erases the entire line of input
eof <Control-D> Sends an “end of file” indication
intr <Control-C> Interrupts the currently running process
quit <Control-\> Kills the current process with a core dump
stop <Control-S> Stops output to the screen
start <Control-Q> Restarts output to the screen
susp <Control-Z> Suspends the current process
lnext <Control-V> Interprets the next character literally

Depending on what a vendor’s keyboards look like, the default for ERASE might
be either <Control-H> or the delete character. (The actual keyboard key may be
labeled “backspace” or “delete,” or it may show only a backarrow graphic.) Unfor-
tunately, the existence of two different standards for this function creates a multi-
tude of problems.

You can use stty erase (see the next section) to tell the terminal driver which key
code your setup is actually generating. However, some programs (such as text ed-
itors and shells with command-editing features) have their own idea of what the
backspace character should be, and they don’t always pay attention to the termi-
nal driver’s setting. In a helpful but confusing twist, some programs obey both
the backspace and delete characters. You may also find that systems you log in to
through the network make different assumptions from those of your local system.

Solving these annoying little conflicts can be a Sunday project in itself. In general,
there is no simple, universal solution. Each piece of software must be individually
beaten into submission. Two useful resources to help with this task are the Linux
Backspace/Delete mini-HOWTO from tldp.org and a nifty article by Anne Baretta
at ibb.net/~anne/keyboard.html. These notes are both written from a Linux per-
spective, but the problem (and solutions) are not limited to Linux.

50.10	 stty: set terminal options
stty lets you directly change and query the various settings of the terminal driver.
There are about a zillion options, but most can be safely ignored. stty generally uses
the same names for driver options as the termios man page does, but occasional
discrepancies pop up.

A good combination of options to use for a plain-vanilla terminal is

solaris$ stty intr ^C kill ^U erase ^H -tabs

1460	 Chapter 50	 Serial Devices and Terminals	

Here, -tabs prevents the terminal driver from taking advantage of the terminal’s
built-in tabulation mechanism, a useful practice because many emulators are not
very smart about tabs. The other options set the interrupt, kill, and erase charac-
ters to <Control-C>, <Control-U>, and <Control-H> (backspace), respectively.

You can use stty to examine the current modes of the terminal driver as well as to
set them. stty with no arguments produces output like this:

solaris$ stty
speed 38400 baud;
erase = ^H; eol = M-^?; eol2 = M-^?; swtch = <undef>;
ixany
tab3

For a more verbose status report, use the -a option:

solaris$ stty -a
speed 38400 baud; rows 24; columns 80;
intr = ^C; quit = ^\; erase = ^H; kill = ^U; eof = ^D; eol = M-^?; eol2

= M-^?;
swtch = <undef>; start = ^Q; stop = ^S; susp = ^Z; dsusp = ^Y; rprnt =

^R;
werase = ^W; lnext = ^V; flush = ^O;
-parenb -parodd cs8 hupcl -cstopb cread -clocal -crtscts
-ignbrk brkint -ignpar -parmrk -inpck -istrip -inlcr -igncr icrnl ixon

-ixoff
-iuclc ixany imaxbel
opost -olcuc -ocrnl onlcr -onocr -onlret -ofill -ofdel nl0 cr0 tab3 bs0

vt0 ff0
isig icanon iexten echo echoe echok -echonl -noflsh -xcase -tostop

-echoprt
echoctl echoke

The format of the output is similar but lists more information. The meaning of the
output should be intuitively obvious if you’ve written a terminal driver recently.

stty operates on the file descriptor of its standard input, so you can set and query
the modes of a terminal other than the current one by using the shell’s input redi-
rection character (<). You must be the superuser to change the modes on someone
else’s terminal.

50.11	 tset: set options automatically
tset initializes the terminal driver to a mode appropriate for a given terminal type.
The type can be specified on the command line; if the type is omitted, tset uses the
value of the TERM environment variable.

tset supports a syntax for mapping certain values of the TERM environment vari-
able into other values. This feature is useful if you often log in through a modem
or data switch and would like to have the terminal driver configured correctly for

	 Terminal unwedging	 1461

the terminal you are really using on the other end of the connection rather than
something generic and unhelpful such as “dialup.”

For example, suppose that you use xterm at home and that the system you are
dialing in to is configured to think that the terminal type of a modem is “dialup.”
Putting the command

tset -m dialup:xterm

in your .login or .profile file sets the terminal driver appropriately for xterm when-
ever you dial in.

Unfortunately, the tset command is not really as simple as it pretends to be. To have
tset adjust your environment variables in addition to setting your terminal modes,
you need lines something like this:

set noglob
eval `tset -s -Q -m dialup:xterm`
unset noglob

This incantation suppresses the messages that tset normally prints (the -Q flag),
and asks that shell commands to set the environment be output instead (the -s flag).
The shell commands printed by tset are captured by the backquotes and fed to the
shell as input with the built-in command eval, causing the commands to have the
same effect as if they had been typed by the user.

set noglob prevents the shell from expanding any metacharacters such as * and ?
that are included in tset’s output. This command is not needed by sh/ksh users (nor
is the unset noglob to undo it), since these shells do not normally expand special
characters within backquotes. The tset command itself is the same no matter what
shell you use; tset looks at the environment variable SHELL to determine what
flavor of commands to print.

50.12	 Terminal unwedging
Some programs (e.g., vi) make drastic changes to the state of the terminal driver
while they are running. This meddling is normally invisible to the user, since the
terminal state is restored when the program exits or is suspended. However, a pro-
gram can crash or be killed without performing this housekeeping step. When this
happens, the terminal may behave very strangely: it might fail to handle newlines
correctly, to echo typed characters, or to execute commands properly.

Another common way to confuse a terminal is to accidentally run cat or more on
a binary file. Most binaries contain a mix of 8-bit characters that is guaranteed to
send some of the less-robust emulators into outer space.

To fix this situation, use reset or stty sane. reset is actually just a link to tset on
many systems, and it can accept most of tset’s arguments. However, it is usually
run without arguments. Both reset and stty sane restore the default state of the

1462	 Chapter 50	 Serial Devices and Terminals	

terminal driver and send out an appropriate reset code from termcap/terminfo
if one is available.

In many cases for which a reset is appropriate, the terminal has been left in a mode
in which no processing is done on the characters you type. Most terminals gener-
ate carriage returns rather than newlines when the Return or Enter key is pressed.
Without input processing, this key generates <Control-M> characters instead of
sending off the current command to be executed. To enter newlines directly, use
<Control-J> or the line feed key (if there is one) instead of Return.

50.13	 Debugging a serial line
Debugging serial lines is not difficult. Here are some typical errors:

•	 Forgetting to tell init to reread its configuration files
•	 Forgetting to set soft carrier when using three-wire cables
•	 Using a cable with the wrong nullness
•	 Soldering or crimping connectors upside down
•	 Connecting to the wrong wire because of bad or nonexistent wire maps
•	 Setting the terminal options (including speed) incorrectly

A breakout box is an indispensable tool for debugging serial cabling problems. It is
patched into the serial line and shows the signals on each pin as they pass through
the cable. The better breakout boxes have both male and female connectors on each
side and so are flexible in their positioning. LEDs associated with each “interesting”
pin show when the pin is active.

Some breakout boxes are read-only and just let you monitor the signals; others let
you rewire the connection and assert a voltage on a particular pin. For example, if
you suspect that a cable needs to be nulled (crossed), you can use the breakout box
to override the actual cable wiring.

50.14	 Connecting to serial device consoles
Perhaps the most common and useful application of RS-232 today is to connect to
the serial “console” of another device. The device could be anything from a man-
ageable UPS or network switch to an embedded Linux system such as the TiVo
box under your TV. For example, you might connect a serial line to the UPS that
powers your equipment rack in a remote data center so that you can shut off power
remotely in an emergency.

The basic steps for connecting to a serial console are as follows:

•	 Attach a cable between the serial port on your UNIX system and the de-
vice you want to talk to. See the discussion earlier in this chapter about
the various connector types and pinouts that might be necessary. You’ll

	 Connecting to serial device consoles	 1463

most likely need a null modem cable. These are available at your nearest
computer store.

•	 Install or identify the terminal communication software you will use on
your UNIX or Linux system. Decades ago, the standard command for
this was cu or tip. You can still use these in a pinch, but modern-day al-
ternatives such as minicom and picocom are better. Linux distributions
normally include one of these; on other systems, you may need to install
the software yourself (see freshmeat.net/projects/minicom or freshmeat.
net/projects/picocom, respectively).

•	 Configure your communication software to open the correct device file
(see the discussion earlier in this chapter). Usually, names like /dev/ttya,
/dev/tty1, /dev/ttyS0, or /dev/S0 are good first guesses.

•	 Set the baud rate, stop bits, and flow control to match the defaults used
on the target device. These parameters are usually outlined in the man-
ual for the device, but you can also try all possible combinations. If you
don’t know the correct baud rate, an “old dog” trick is to connect and type
a few characters. If you have to type multiple characters to get a single
character of garbage, you’ve set the baud rate too high. If typing one or
two characters produces many characters of garbage, you’ve set the baud
rate too low. Shhhh… don’t tell anyone!

•	 Once you’ve successfully connected, you should be able to enter com-
mands on the remote console. If you find that the device suddenly hangs
on long output, you have probably misconfigured the flow control; typing
<Control-Q> will sometimes get you by.

If you have trouble connecting, the first debugging step should be to remove the
crossover in the cable, or to add one if you didn’t start with one. Don’t forget that
if you’re connecting to a remote UNIX box, you’ll need to set up a getty on the far
end to listen for your connection and present a login prompt.

