

638

28

Accounting

28.1 I

NTRODUCTION

Accounting is an anachronism. Back in the good old days of expensive
timesharing hardware

1

, the use of accounting was common. Today, it is
used primarily to provide an audit trail for tracking security break-ins,
and perhaps to monitor disk and printer usage or to convince manage-
ment of the need for more resources.

The

UNIX

 kernel and various system programs keep accounting records
for

CPU

 time, login sessions, printer usage, modem usage, and a number
of other system resources. A system administrator must wade through
the megabytes of collected data and decide what to archive, what to
keep temporarily, and what to throw away.

Accounting data files can grow quickly and will overflow the disk if not
truncated regularly. Management of log files in general, including
accounting files, is covered in Chapter

12

,

Syslog and Log Files

.

The disk space consumed by these data files is one of the main costs of
accounting. Another potential cost is reduced system performance. In
particular, process accounting requires an additional write to disk for
each process. On some older systems this seemed to have a perceptible
effect, but on modern systems the impact is negligible.

1. A one-MIPS Vax 11/780 cost between $200,000 and $300,000 in 1980.

Chapter 28 Accounting

639

The accounting systems are quite different under

ATT

 and

BSD

, but both
systems measure essentially the same data. The

BSD

 system has a few

C

 programs that summarize single quantities of interest, while the

ATT

system is built on shell scripts that collect and summarize the data into
comprehensive reports. System administrators tend to write scripts
that take the output of the available tools and convert it to a format
that suits their needs.

28.2 W

HY

 B

OTHER

WITH

 A

CCOUNTING

?

The most obvious reason for accounting is to bill for resources used.
This is appropriate for commercial providers, but not usually for in-
house installations. Government contractors may be required to keep
detailed accounting information.

Universities that purchase computers with federal research dollars are
often required by their funding agencies to keep accounting records if
they charge research grants for use of the computing infrastructure. In
the past it was common to charge a “sales tax” based on usage. But as
accounting fell out of favor and the volume of data saved to protect
against a possible audit became unmanageable, many sites changed
their charging algorithm to an “income tax” on research grants, thus
sidestepping accounting altogether. This approach has even survived a
couple of audits.

See Chapter 23 for
more information
about security.

The most compelling reason to maintain accounting records remains
the discovery of unauthorized use. Hackers

2

 are out there, and account-
ing records are often the only way a site can tell if it has been attacked.

28.3 W

HAT

TO

 M

EASURE

AND

 A

RCHIVE

Connect-time records written by

login

 to the

wtmp

 file are often the
most helpful accounting records for tracking misuse.

CPU

 accounting
information written by the kernel to the

acct

 or

pacct

 file is of less
value, because only the names of commands are recorded, not their
arguments. Printer accounting is useful if you either charge for printing
or provide a “reasonable” amount of printing without charge. Records of
disk usage are used to browbeat users into cleaning up their files.

Before truncating accounting files, you may want to create a permanent
record by archiving summaries to disk or tape. Raw accounting data
files, summaries of their contents, and some log files may all need to be
archived if records are required for a possible audit.

2. Or more accurately, “crackers.” A person that breaks into a computer system used to be
called a hacker, but these days “hacker” just as often denotes a prodigious, but possibly
inelegant, coder. Technical lexicographers had to come up with a new word for the bad
guys. For example, “Stay away from my network, you honky cracker!”

640

UNIX System Administration Handbook

Four broad philosophies exist for archiving these files:

Conservative

Archive all accounting files and most log files to
tape. Store tapes in a secure location.

Sensible

Archive summary accounting files to tape or disk.
Rotate other accounting files, overwriting them as
the rotation sequence wraps around. Keep at least
a month’s worth of raw data to facilitate tracking if
security problems arise.

Carefree

Restart all accounting and log files periodically and
throw away the old ones.

None

Turn off accounting as much as possible and trun-
cate files nightly out of

cron

.

Choose a philosophy that fits your site’s requirements.

28.4 A

CCOUNTING

IN

A

 N

ETWORKED

 E

NVIRONMENT

In an environment with lots of workstations on a local area network,
separate accounting on each workstation can be a real nightmare. Pro-
grams run out of

cron

 can collect and summarize data locally; if fur-
ther summaries by host are required, you must build a tool that can be
run from a central host.

An example of such a tool (for printer accounting using

BSD

’s

lpr

 sys-
tem) is a pair of scripts we call

pachelper

 and

pacmaster

, which are
included on the

CD

-

ROM

.

28.5 A

CCOUNTING

UNDER

 BSD

In

BSD

, accounting files were traditionally located under

/usr/adm

. A
few years ago, Sun reorganized the filesystem and introduced the

/var

directory for files that vary on a per-host basis. This allowed directories
such as

/usr

 to be made machine-independent. With this organization,
local files are concentrated in only a few places rather than being scat-
tered randomly throughout the filesystem.

Many vendors have followed Sun’s lead, and accounting files now often
live in

/var/adm

. As an aid to old-timers and old software, there is
often a symbolic link from

/usr/adm

 to

/var/adm

.

CPU Accounting

CPU

 accounting must be enabled in the kernel, and then can be turned
on by the

accton

 command.

 accton

filename

 turns accounting on
(

filename

 must identify an existing file) and

accton

 with no argu-
ments turns accounting off.

Chapter 28 Accounting

641

accton

 is usually executed at boot time from one of the system startup
scripts. Accounting data is kept in

/var/adm

 in a file called

acct

 or, on
later systems,

pacct

. The name was changed to suggest process
accounting, not to break all your accounting programs, although that
may be a secondary effect. You can theoretically specify a different file-
name as an argument to

accton

, but if you don’t use the default file-
name, commands such as

lastcomm

 may break.

lastcomm

 can be used
to verify that process accounting is working; it shows every command
that has been executed, organized by user or by terminal port.

Process accounting data grows by megabytes per day on a busy system.
Each process has a record that includes its

UID

, elapsed

CPU

 time, aver-
age memory use,

I

/

O

 summary, and several other details. Accounting
records are written as each process completes; a program that never
terminates does not produce an accounting record.

The

sa

 command summarizes

CPU

 data, either by user (typically to the
file

/var/adm/usracct

) or by command (to

/var/adm/savacct

). It
has a zillion options, most of which have to do with the sort order of the
final output and the uninteresting processes to ignore.

Two useful options are

-m to summarize by user, and -s to summarize
by command and reinitialize the raw data file. sa -s should be run at
least daily to control the size of /var/adm/pacct .

The user-centric output looks like this:3

sa -m
user #commands CPU-min io-operations memory used
--
root 61038 676.14cpu 41532937tio 77683440k*sec
daemon 8365 27.00cpu 3619385tio 291491k*sec
sys 224 1.26cpu 813849tio 11414k*sec
yiyan 226 2.82cpu 239285tio 242423k*sec
giffard 46 1.41cpu 227312tio 247336k*sec
nikki 187 0.53cpu 35722tio 9419k*sec
...

Column one is the login name of the user. Column two is the total num-
ber of commands that the user executed. Column three is the CPU time
(user plus system) consumed, in minutes. Column four is the total num-
ber of I /O operations performed, and column five is the average memory
used, measured in kilobyte-seconds.

sa -s summarizes CPU use by command, producing the following out-
put. It also truncates /var/adm/pacct to zero length.

3. Accounting commands tend to produce very wide reports. We have in some cases made
slight adjustments to fit as much information as possible into the examples.

642 UNIX System Administration Handbook

sa -s
#commands CPU time I/O memory command
--
198939 992142.01re 4594.91cp 945avio 648k TOTALS
 163 6818.52re 2915.13cp 960avio 29k perl
 1808 186951.93re 166.22cp 2871avio 1357k in.rlogi
 19 1671.62re 163.05cp 2578356avio 4509k xlock
 19253 2000.08re 124.47cp 332avio 956k sendmai*
 167 7600.94re 97.71cp 21363avio 3612k emacs
 401 130627.88re 74.80cp 5101avio 2493k xterm
 3685 242328.77re 63.87cp 641avio 853k csh
 28673 -157505.92re 32.77cp 16avio 53k sh
 43 598.05re 24.74cp 39600avio 5225k ***other
 1097 166.93re 24.43cp 6928avio 1910k sendmail
 ...

Column one is the number of times the command has been executed.
Columns two and three are the real time (wall-clock time) and CPU time
(user and system), both in minutes. Column four is the average number
of I /O operations per command execution. Column five is the memory
usage in kilobytes averaged over the CPU time execution period. Col-
umn six is the command name.

The first line contains the totals for all commands. (The word TOTALS
isn’t really part of sa’s output; we added it for clarity.) The ***other
entry represents all commands with unprintable characters in their
names and all commands that were executed only once.

Command names are truncated to eight characters; an asterisk after a
command name means the process was run by root. There are often two
entries for common rootly commands: one for regular users executing
the command and one for root executing it.

Values are kept in a special floating point format that can wrap around;
note the elapsed time entry for sh. This example is on a SunOS system
where the virtual memory accounting is suspect. 29K average memory
usage for perl certainly looks low!

The system automatically suspends accounting if the filesystem where
accounting data is written becomes too full. When space becomes avail-
able on the filesystem again, accounting is restarted.

If the machine crashes or is rebooted, processes that were running are
not recorded in the CPU accounting file. A sneaky user could avoid CPU

accounting by having a program sleep indefinitely upon completion so
that it is always still running when the machine is rebooted.

You might ask, “Who cares about the CPU cycles, memory usage, and so
on? Hardware is cheap, and it costs the same whether it’s running or

Chapter 28 Accounting 643

sitting idle.” Well, here is an example of using process accounting to
tackle a serious breach of security:

When the Internet Worm hit in the Fall of 1988, it created several mis-
chievous processes called -sh. A ps of the system looked normal, but
the load average was going through the roof. Very short-lived processes
are hard to spot and understand using ps; we ran sa -s to summarize
the existing accounting data and truncate the raw data file. After five
minutes we ran sa again and noticed that the -sh processes were get-
ting all the CPU time. We then knew what processes to kill to attempt to
get things under control again.

Two factors were crucial in our analysis and control of the situation:

• We immediately tried to get (and eventually got) a high-priority
root shell using the nice command, so our commands did not
take minutes to complete when the load average pushed 100.

• Accounting was running so that we could look at the process
accounting data. If you choose not to run accounting, it should
still be compiled into the kernel so you can turn it on if need be.

Connect-Time Accounting

Connect-time accounting is turned on by the existence of the data file
/var/adm/wtmp . Login, port, and login /logout times are recorded.

With the advent of window systems and pseudo-terminals, connect-
time accounting has become a poor indicator of use. A user logged in to
a remote host from several windows is counted multiple times. But a
user that accesses the host via rsh and runs xterm is not counted at
all. If you have a workstation in your office and you leave yourself
logged in for weeks at a time from several windows, you can record over
100 hours a day of connect time.4

The ac command summarizes the data in wtmp by person (-p) or by
day (-d), and should be run monthly. A quick glance at the output may
alert you to unexpected login activity; for example, unexplained use by
an employee on vacation or by an inactive account. The wtmp file should
be rotated or truncated when ac is run. (Note that while sa truncates
the pacct file unless told not to, ac never truncates wtmp.) The per-
person summary looks like this:

ac -p
login connect-hrs

neves 19.46
weaver 0.13

4. Does your site pay overtime?

644 UNIX System Administration Handbook

dwight 2.67
jacques 3.51
...
total 759.14

A list of login names can also be given. For example:

ac -p evi trent root
login connect-hrs

evi 21.03
trent 24.70
root 0.02
total 45.75

The output of ac -d, which summarizes by date, illustrates that the
weekends are periods of lighter usage.

ac -d
date connect-hrs

Nov 1 total 126.70
Nov 2 total 170.98
Nov 3 total 198.19
Nov 4 total 140.47
Nov 5 total 122.83
Nov 6 total 58.92
Nov 7 total 89.93
Nov 8 total 131.55

These options can be combined. For example:

ac -dp lane
date connect-hrs

Aug 1 total 8.87
Aug 2 total 7.71
Aug 5 total 4.45

The last command can be used to determine the actual times that a
user logged in and out. Its output can be keyed to a particular user or to
a port, which is useful for tracking intruders, finding overworked or bro-
ken terminals, and monitoring dial-up modem usage. For example, the
command last lane shows details on user lane’s usage:

last lane
lane ttype hartree.cs.colo Thu Aug 5 15:02-19:28 (04:26)
lane ttyp4 lair.cs.colorad Mon Aug 2 18:44-20:38 (01:54)
lane ttyp3 lair.cs.colorad Mon Aug 2 18:44-20:38 (01:54)
lane ttyq8 hartree.cs.colo Mon Aug 2 14:16-16:15 (01:59)
lane ttyp4 lair.cs.colorad Sun Aug 1 19:17-22:14 (02:57)
lane ttyp1 lair.cs.colorad Sun Aug 1 19:16-22:13 (02:57)

Chapter 28 Accounting 645

The double entries come from a window system configured to start a
remote login session in two windows at once.

last ttyd0
Ufossa ttyd0 Fri Aug 6 13:44-13:53 (00:09)
Uicarus ttyd0 Fri Aug 6 13:36-13:36 (00:00)
Ueddie ttyd0 Fri Aug 6 13:16-13:19 (00:02)
Upathome ttyd0 Fri Aug 6 12:47-12:48 (00:00)
Upathome ttyd0 Fri Aug 6 11:45-11:46 (00:00)

These are all UUCP hosts; five years ago when home users typically had
only ASCII terminals (and when dial-up ports were on workstations
rather than concentrated at terminal servers as they are today), this
list would have included more real users. For security reasons, it is use-
ful to run last on the dial-up ports every so often to look for unusual
events (unexpected users or users at unexpected times).

Printer Usage
See Chapter 25 for
information about
/etc/printcap .

The line printer daemon lpd records printer usage if a printer’s entry
in /etc/printcap has the af variable defined and the designated file
exists. By convention, printer accounting data files are usually called
/var/adm/ printer -acct . They list the number of pages printed for
each job, the hostnames where the jobs originated, and the user names
of the jobs’ owners. The information is summarized by the pac com-
mand; use it at least monthly. For example:

/etc/pac -Pgutenberg
Login pages/feet runs price
alpo:ross 29.00 2 $ 0.58
anchor:zweifel 114.00 2 $ 2.28
axon:paul 7.00 1 $ 0.14
blue:brookmak 6.00 6 $ 0.12
blue:sanders 1.00 1 $ 0.02
columbine:carolyn 44.00 40 $ 0.88
columbine:harriet 42.00 7 $ 0.84
...
total 731.00 161 $ 14.62

The notation alpo:ross refers to user ross on host alpo. The pac com-
mand takes a flag -pprice which sets the price per page in dollars. The
default is two cents per page. pac does not charge per run, so header
pages are not included in the price column. There are several other
options to pac; as always, consult your manual.

It is the responsibility of the printer’s input filter to generate account-
ing records. On PostScript printers, unless the filter actually queries
the printer for its page count before and after the job, the page counts
are extremely suspect.

646 UNIX System Administration Handbook

Dial-Out Usage

The tip and UUCP family of commands (BSD version) record the login
name, date, time, phone number, and status of all calls made through a
dial-out modem. The information is in /var/adm/aculog , which is a
text file. Sample log entries are shown below (with lines wrapped to fit).

uucp:daemon (Sun Oct 31 18:31:03 1993) <interlink,
5551234, telebit> call completed

uucp:daemon (Mon Nov 1 08:58:35 1993) <uswestpaging,
5555678, telebit> call completed

uucp:staff (Mon Nov 1 09:37:07 1993) <t38, , /dev/cua0>
call completed

uucp:staff (Mon Nov 1 09:38:56 1993) <t38, , /dev/cua0>
call terminated

interlink and uswestpaging are entries in /etc/remote that
describe modem characteristics, ports, phone numbers, and so on.

If you allow users to talk directly to a modem via a dialer entry in the
/etc/remote file, then tip dialer will circumvent accounting, since
tip does not directly cause the phone number to be dialed and there-
fore cannot write an appropriate log entry.

There are no standard tools that summarize the aculog file, but grep
can be used to identify long distance calls. The phone company usually
provides itemized bills for long distance calls that can be matched
against your tip log files.

Unfortunately, most modems can be put into command mode via a spe-
cial sequence of characters and pauses. A thief can circumvent account-
ing by calling a local number, sending the modem’s break sequence, and
then instructing the modem to hang up and redial unbeknownst to tip .
The break sequence is usually configurable, so you might want to make
it something nonstandard if you allow general access to modems.

Summaries

Table 28.1 details the files that store accounting data on BSD-ish sys-
tems. The owner, group, and mode (shown here in octal) of the account-
ing data files are important; any program used to reinitialize these files
should be sure to chown , chgrp , and chmod appropriately.

Table 28.2 summarizes the BSD accounting commands.

28.6 ACCOUNTING UNDER ATT
Most versions of ATT UNIX contain a fairly complete accounting system
implemented with C programs and sh scripts. These scripts are typi-
cally run daily and monthly by cron . All accounting is done under the

Chapter 28 Accounting 647

login adm with home directory /var/adm ; accounting information is
kept in /var/adm/acct . The accounting programs and scripts are usu-
ally in /usr/lib/acct .

Setting Up Accounting

On most systems, accounting does not run by default, so you must set it
up. The accounting programs may even be unbundled (either sold sepa-
rately or included with standard distribution but separately installed).

To see if you have the accounting system on-line, look in the directory
/usr/lib/acct . If it’s empty, go back to the distribution CD-ROM. Oth-
erwise, make sure that the adm login exists. If it does not, you can cre-
ate it by adding the following line to /etc/passwd :

adm:*:4:4:Administrative Login:/var/adm:/bin/sh

adm traditionally has UID four, but that is arbitrary. It’s best to look on
the distribution and observe the UID of all the accounting programs and
configuration files. After creating the adm login, make sure that the
directory /var/adm/acct exists and is owned by adm. /var/adm
should include a .profile file with the following contents:

PATH=/usr/lib/acct:/bin:/usr/bin

You should also create the subdirectories night , sum, and fiscal in
/var/adm/acct .

Accounting information is not gathered until the startup command is
executed. To start accounting automatically on a system using BSD-style

Table 28.1 Summary of BSD accounting files

Data Filename Type Owner Group Mode

CPU, Memory acct or pacct Binary root system 644
Connect time wtmp Binary root system 644
Printer usage lp -acct Text daemon daemon 644
Dial-out usage aculog Text uucp daemon 660

Table 28.2 Summary of BSD accounting commands

Data Command Frequency to run

CPU, Memory accton During boot
sa At least daily
lastcomm As needed

Connect time ac Monthly
last As needed

Printer usage pac Monthly for each printer

648 UNIX System Administration Handbook

/etc/rc files, such as HP-UX, add the following line to the appropriate
section of the rc file:

/bin/su - adm -c /usr/lib/acct/startup

The /usr/lib/acct/shutacct command turns off accounting; some
systems need to have it done specifically during the shutdown process,
and some do it automatically.

For systems using ATT-style init levels to specify the actions to take
when going multi-user (for example, Solaris), the following shell script
added to /etc/init.d and hard-linked to the rc2.d directory would
turn accounting on and off as the machine came in and out of multi-
user mode.

See Chapter 2, Booting and Shutting Down, for more information about
starting services at boot time.

#!/bin/sh
rc script to start and stop accounting

case "$1" in
'start')
 if [-x /usr/lib/acct/startup] ; then
 echo "accounting started."
 /usr/lib/acct/startup
 fi
 ;;

'stop')
 if [-x /usr/lib/acct/shutacct] ; then
 /usr/lib/acct/shutacct
 fi
 ;;

*)
 echo "Usage: /etc/init.d/acct { start | stop }"
 ;;
esac

exit 0

A copy of this script is included on the CD-ROM. IRIX 4.0 includes a simi-
lar script, but IRIX 5.2 and Solaris 2.4 do not. Sometimes the script exists
in /etc/init.d but the link to rc2.d is missing.

In order for the system to charge properly for system usage, you must
tell it which hours you consider “prime time” and which days you con-
sider holidays. This is done in the file /usr/lib/acct/holidays . A
sample holidays file follows.

Chapter 28 Accounting 649

* Prime/Nonprime Table for Accounting System
*
* Year PrimeStart NonPrimeStart
 1994 0900 1800
*
 1 Jan 1 New Year's Day
 35 Feb 4 AT&T vs. UC Lawsuit Settled
 231 Aug 19 ucbvax Retired
 323 Oct 31 Halloween
 325 Nov 2 Anniversary of the Internet Worm
 359 Dec 25 Christmas Day

All lines starting with a star are comments. The first non-comment line
specifies the current year (in this case 1994), and the start and end of
prime hours. In this example, prime hours are from 9:00 a.m. to 6:00
p.m. Prime time must be a contiguous block of time; all other times are
considered non-prime. There is no way to have more than two classes of
service (prime and non-prime) or to have more than one block of prime
time per day (for example, prime time from 10:00 a.m. to 5:00 p.m. and
again from 7:00 p.m. to 10:00 p.m.).

The rest of the lines in the file list the days that you consider holidays,
which are treated the same as weekends. The fields are:

yearday monthday description

Both a C program
and a perl script
to compute Julian
dates are included
on the CD-ROM.

Of these, only yearday (the Julian date) is actually used by accounting
programs. Obviously, the holidays file must be updated each year. If
accounting is run with an out-of-date holidays file, a mail message
will be sent to users adm and root, and log entries will be written. If you
don’t use accounting to charge people for computing services, don’t
worry too much about the contents of the holidays file. It only needs to
contain the line specifying the current year and prime time hours in
order to keep the log files from filling with error messages.

See Chapter 10 for
more information
about cron .

Running startup tells the system to start archiving accounting data,
but it does not cause the data to be processed. The following cron
entries, usually placed in adm’s crontab with crontab -e adm, support
both daily and monthly processing of accounting. They run accounting
in the wee hours of the night, when users won’t be disturbed.

daily and weekly accounting chores
#
0 4 * * * /usr/lib/acct/runacct 2>/var/adm/acct/nite/d2log
0 1 * * 4 /usr/lib/acct/dodisk
0 * * * * /usr/lib/acct/ckpacct
#
monthly accounting
#
0 2 1 * * /usr/lib/acct/monacct

650 UNIX System Administration Handbook

What Accounting Does

The runacct program generates several files that contain daily
accounting information and stores them in /var/adm/acct/sum . The
only files that are of any real interest are the report files.

There are report files for each day since monacct was last run called
rprt mmdd where mm is the month and dd is the day. These reports can
be printed out if you want a record of daily accounting. The reports con-
tain summaries of terminal usage, command usage, disk usage, and
time of last login. The format of the reports is self-explanatory.

If runacct does not run to completion because the system crashes, it
must be restarted by hand. The manual page gives a complete descrip-
tion of how to restart runacct so it picks up where it left off. runacct
writes error messages to /var/adm/acct/nite/fd2log (or whatever
file you specify in the cron entry that starts runacct). For example:

acctcms: Hash table overflow. Increase CSIZE

UPDATE /etc/holidays WITH NEW HOLIDAYS

acctprc2: INCREASE A_USIZE

Unfortunately, only the holidays file can be updated by mere mortals.
CSIZE is the size of a hash table defined in acctcms.c ; it cannot be
changed unless you have source code, and its value is usually 1,000.
A_USIZE is the maximum number of logins and is set in acctdef.h ,
usually to 500; it also requires access to the source code to change.
Solaris has boosted these constants to more reasonable values.

Error messages are also written to /var/adm/acct/nite/log mmdd,
where mm is the current month and dd the current day. For example, the
file log0601 contains

UPDATE /etc/holidays WITH NEW HOLIDAYS

acctcon1: RECOMPILE WITH LARGER A_TSIZE

Again, you must have source code to fix most errors.

The dodisk program collects disk usage information. In the example
above, dodisk is only run once a week on Thursdays; it uses a bit of
CPU and I /O bandwidth, and for many users the results are not very
volatile. The data is stored in /var/adm/acct/nite/disktacct and
is merged into the file daytacct by the runacct script.

See page 620 for
more information
about du .

The ckpacct command monitors the process accounting data file
pacct (in either /usr/adm or /var/adm) and splits it up when it gets
larger than a certain size, usually 1,000 du-sized blocks. ckpacct also
monitors free space on /usr or /var and disables accounting if there
are fewer than 500 free blocks.

Chapter 28 Accounting 651

Such monitoring makes sense if the monitor watches the filesystem on
which the pacct file lives. Under SunOS, /usr is watched, but pacct
is in /var/adm , usually on a separate partition. Fortunately, ckpacct
is a script and so you can change /usr to /var to fix this problem.

monacct summarizes the daily reports for the previous month, stores
summaries in /var/adm/acct/fiscal/fiscrpt mm (where mm is
again the month), and restarts the summary files in the sum directory.
If you want to charge users for their usage, you can write a simple perl
or shell script that examines the monthly summaries and generates
invoices for each user.

In addition to the information that is collected automatically when
accounting is turned on, the chargefee program allows you to assess
additional fees on specific users. This is useful if you want to charge for
something that you did for them, such as loading a tape. You could use
the command

/usr/lib/acct/chargefee joe 10

to charge the user joe for ten accounting units (the meaning of units is
completely arbitrary). All fees that are charged with chargefee will
appear in the report files, so you can include them in invoices.

Ideally, you should not have to worry about the nitty-gritty of how data
files are processed. However, if you want to modify the way that ac-
counting works, or if something is not working correctly, you may have
to investigate its inner workings. The accounting system keeps a lot of
internal files in /var/adm/acct/nite and /var/adm/acct/sum . De-
scriptions of the various commands and data files can be found in the
documentation. Table 28.3 (next page) describes the files usually found
in the directory /usr/lib/acct . Entries with a program in parenthe-
ses at the end of the description field are not run directly, but rather by
the designated program.

This is an impressive array of accounting artillery. However, very few of
the commands are used directly by a system administrator. Daily and
monthly summaries are normally handled out of cron . Occasionally,
accounting will fail to run to completion, but the ATT accounting system
does a good job of letting you restart it.

runacct produces the daily summaries. It is usually invoked so that its
error output is sent to /var/adm/acct/nite/fd2log (file descriptor
two is the standard error channel). If there is something wrong with
accounting, diagnostic messages will show up in this file. If you ignore
accounting and have something misconfigured, the file can grow quite
quickly. Keep an eye on it. Also, periodically inspect the other output
files beneath /var/adm/acct .

652 UNIX System Administration Handbook

Printer Accounting
See Chapter 25 for
more information
about printing.

ATT systems do not have printer accounting, although the spooler
records print jobs in the file /var/spool/lp/logs/requests . The
number of bytes printed is recorded, but not the number of pages, so the
information is essentially useless for accounting purposes. If you want
true printer accounting like that provided by the BSD pac command, it
must be built into the printer interface scripts used in the lp system.

28.7 SPECIFICS FOR VARIOUS OPERATING SYSTEMS

Most vendors use BSD- or ATT-style accounting without much modifica-
tion. Tables 28.4 and 28.6 detail the locations of accounting data files
and the commands supplied by vendors to administer them.

Table 28.3 Summary of ATT accounting files in /usr/lib/acct

Command Type Description

A
d

m
in

is
tr

at
io

n
startup sh script Runs at boot time to enable accounting
accton Program Turns on process accounting
turnacct sh script Turns on accounting to /usr/adm/pacct
shutacct Program Turns off accounting and logs to wtmp
chargefee sh script Charges specific users
holidays Text file List of holidays
nulladm sh script Reinitializes files and checks ownerships
remove sh script Cleans up /usr/adm/acct/sum

Ti
m

e

acctcon1 Program ASCIIfies connect-time records (runacct)
acctcon2 Program Converts to tacct format (runacct)
lastlogin sh script Updates last login record in sum/loginlog
acctwtmp Program Adds boot record to wtmp file
fwtmp Program Fixes dates in wtmp when changed by date
wtmpfix Program Recognizes/repairs a bad wtmp file

C
PU

ckpacct sh script Restarts pacct file if it is too big
acctcms Program Makes command usage records (runacct)
acctprc1 Program Makes process records (runacct)
acctprc2 Program Makes process records (runacct)

D
is

k
u

se acctdisk Program Makes disk usage records (dodisk)
acctdusg Program Makes disk usage records (dodisk)
diskusg Program Generates disk accounting data by user
dodisk sh script Takes a snapshot of disk usage

R
ep

o
rt

s

runacct sh script Summarizes daily data
acctmerg Program Merges processed records (runacct)
prctmp sh script Prints session record file
prdaily sh script Prints previous day’s accounting summaries
prtacct sh script Prints accounting records from tacct files
monacct sh script Produces monthly reports

Chapter 28 Accounting 653

Solaris is straight ATT, with no sa, ac , or pac to be found. There is no
/usr/etc either. The holidays file is in /etc/acct , carefully moved to
its own directory so that any old accounting scripts expecting it to be in
/usr/lib/acct will break without warning.

Table 28.5 describes four bonus commands in /usr/lib/acct that join
those from Table 28.3. The last two of these commands account for users
who are logged in while accounting is being run.

HP-UX uses ATT-style accounting and 4.3BSD-style logging via syslog .
Accounting is a separate subsystem and must be explicitly loaded from
the software distribution. Commands are in /usr/lib/acct ; raw data
files are in /usr/adm with summaries in /usr/adm/acct . Accounting
must be started in /etc/rc to begin collecting data.

IRIX uses ATT-style accounting with commands in /usr/lib/acct and
the data summarized in /var/adm/acct . It supports both ATT and BSD

printing; the pac printer accounting program is included.

IRIX distinguishes between an empty data file for a configured service
and an unconfigured service. The directory /etc/config contains files
representing each service; the command chkconfig checks to see if the
service is configured or not. If acct contains the word on and crontab
entries are as below, accounting data will be collected and summarized.

runacct processes connect, fee, disk, and process
accounting files
0 4 * * 1-6 if /etc/chkconfig acct; then

/usr/lib/acct/runacct 2> /usr/adm/acct/nite/fd2log; fi

Table 28.4 File and command locations by vendor (ATT)

File Solaris HP-UX IRIX

ATT commands /usr/lib/acct /usr/lib/acct /usr/lib/acct
ATT reports /var/adm/acct /usr/adm/acct /var/adm/acct
acct or pacct /var/adm /usr/adm /var/adm
wtmp /var/adm /etc /var/adm
pac – – /usr/etc

Table 28.5 Bonus commands in Solaris

Command Type Description

acctcon Program Combines acctcon1 and acctcon2 programs
acctprc Program Combines acctprc1 and acctprc2 programs
closewtmp Program Fakes entries for users logged on during accounting
utmp2wtmp Program Adds wtmp records for users currently logged on

654 UNIX System Administration Handbook

ckpacct checks the size of /usr/adm/pacct
5 * * * 1-6 if /etc/chkconfig acct; then

/usr/lib/acct/ckpacct; fi
monacct creates summary files in /usr/adm/acct/fiscal
0 5 1 * * if /etc/chkconfig acct; then

/usr/lib/acct/monacct; fi

SunOS uses ATT-style accounting but also includes the BSD commands
for login, process, and printer accounting. As shipped, data files are in
/var/adm/acct and programs and scripts are in /usr/lib/acct .
Accounting must be configured into the kernel in order for process
accounting data to be kept. The variable SYSACCT must be defined; see
Chapter 13, Configuring the Kernel.

The accounting data files were traditionally beneath /usr/adm , which
Sun has linked to /var/adm . SunOS has an additional accounting com-
mand not in the general ATT list from the previous section: getname .
getname is an undocumented command that looks up a user in
/etc/passwd . It is used by several scripts in /usr/lib/acct .

OSF/1 uses ATT-style accounting, but has moved the commands from
/usr/lib/acct to /usr/sbin/acct . DEC’s OSF/1 2.0 includes the BSD

accounting commands in /usr/sbin . Older versions had the man
pages but not the commands (except for pac).

Accounting on BSDI is BSD-style with commands in /usr/sbin ; the ac
command is missing. Process accounting information is archived in
/var/account/acct . Login information is in /var/log/wtmp .

Table 28.6 File and command locations by vendor (BSD)

File SunOS OSF/1 BSDI

accton /usr/lib/acct /usr/sbin/acct /usr/sbin
sa /usr/etc /usr/sbin /usr/sbin
acct or pacct /var/adm /var/adm /var/account
usracct /var/adm /var/adm /var/account
savacct /var/adm /var/adm /var/account
ac /usr/etc /usr/sbin –
wtmp /etc /var/adm /var/log
pac /usr/etc /usr/sbin /usr/sbin
ATT reports /usr/lib/acct /var/adm/acct –
ATT commands /var/adm/acct /usr/sbin/acct –

